A110819 Non-palindromes in A110751; that is, non-palindromic numbers n such that n and R(n) have the same prime divisors, where R(n) = digit reversal of n.
1089, 2178, 4356, 6534, 8712, 9801, 10989, 21978, 24024, 26208, 42042, 43956, 48048, 61248, 65934, 80262, 84084, 84216, 87912, 98901, 109989, 219978, 231504, 234234, 242424, 253344, 255528, 264264, 272646, 275184, 277816, 288288, 405132, 424242, 432432, 439956
Offset: 1
Examples
The prime divisors of 87912 and R(87912) = 21978 are both {2, 3, 11, 37}, so 87912 and 21978 are both in the sequence.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..500
Crossrefs
Cf. A110751.
Programs
-
Maple
revdigs:= proc(n) local L,nL,i; L:= convert(n,base,10); nL:= nops(L); add(L[i]*10^(nL-i),i=1..nL); end: filter:= proc(n) local r; r:= revdigs(n); r <> n and numtheory:-factorset(r) = numtheory:-factorset(n) end proc: select(filter, [$10 .. 10^6]); # Robert Israel, Aug 14 2014
-
Mathematica
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[r[n] != n && Select[Divisors[n], PrimeQ] == Select[Divisors[r[n]], PrimeQ], Print[n]], {n, 1, 10^6}]
-
Python
from sympy import primefactors A110819 = [n for n in range(1,10**6) if str(n) != str(n)[::-1] and primefactors(n) == primefactors(int(str(n)[::-1]))] # Chai Wah Wu, Aug 14 2014
Comments