cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110819 Non-palindromes in A110751; that is, non-palindromic numbers n such that n and R(n) have the same prime divisors, where R(n) = digit reversal of n.

Original entry on oeis.org

1089, 2178, 4356, 6534, 8712, 9801, 10989, 21978, 24024, 26208, 42042, 43956, 48048, 61248, 65934, 80262, 84084, 84216, 87912, 98901, 109989, 219978, 231504, 234234, 242424, 253344, 255528, 264264, 272646, 275184, 277816, 288288, 405132, 424242, 432432, 439956
Offset: 1

Views

Author

Ryan Propper, Sep 15 2005

Keywords

Comments

Trivially, if integer k is a term of this sequence, then R(k) is a term as well.
If n is in the sequence, then so is (10^m+1)*n where 10^m > n. In particular, the sequence is infinite. - Robert Israel, Aug 14 2014

Examples

			The prime divisors of 87912 and R(87912) = 21978 are both {2, 3, 11, 37}, so 87912 and 21978 are both in the sequence.
		

Crossrefs

Cf. A110751.

Programs

  • Maple
    revdigs:= proc(n)
    local L,nL,i;
    L:= convert(n,base,10);
    nL:= nops(L);
    add(L[i]*10^(nL-i),i=1..nL);
    end:
    filter:= proc(n) local r;
      r:= revdigs(n);
      r <> n and numtheory:-factorset(r) = numtheory:-factorset(n)
    end proc:
    select(filter, [$10 .. 10^6]); # Robert Israel, Aug 14 2014
  • Mathematica
    r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[r[n] != n && Select[Divisors[n], PrimeQ] == Select[Divisors[r[n]], PrimeQ], Print[n]], {n, 1, 10^6}]
  • Python
    from sympy import primefactors
    A110819 = [n for n in range(1,10**6) if str(n) != str(n)[::-1] and primefactors(n) == primefactors(int(str(n)[::-1]))] # Chai Wah Wu, Aug 14 2014