A110835 Smallest m > 0 such that there are no primes between n*m and n*(m+1) inclusive.
8, 4, 8, 6, 18, 15, 17, 25, 13, 20, 29, 44, 87, 81, 35, 83, 79, 74, 70, 67, 118, 330, 58, 223, 172, 229, 179, 471, 292, 360, 506, 367, 586, 577, 645, 545, 424, 743, 503, 637, 766, 467, 937, 579, 698, 683, 542, 1443, 641, 628, 616, 604, 2026, 1661, 571, 1834, 551
Offset: 1
Keywords
Examples
a(2)=4 because the primes 3, 5 and 7 are in range 2m to 2m+2 for m from 1 to 3, but 8, 9 and 10 are all composite.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..599
- A. Schinzel and W. Sierpinski, "Sur certaines hypothèses concernant les nombres premiers", Acta Arithmetica 4 (1958), pp. 185-208.
- Wikipedia, Oppermann's conjecture
Programs
-
Mathematica
a[n_]:=Module[{m=1},Until[NextPrime[n*m-1]>n*(m+1),m++];m];Array[a,57] (* James C. McMahon, Aug 10 2025 *)
-
PARI
a(n)=local(m);m=1;while(nextprime(n*m)<=n*(m+1),m=m+1);m
-
PARI
a(n)=for(m=if(n>101,12118,4),oo, if(nextprime(n*m)>n*(m+1), return(m))) \\ Charles R Greathouse IV, Mar 04 2025
-
Python
from sympy import nextprime def a(n): m = 1 while nextprime(n*m-1) <= n*(m+1): m += 1 return m print([a(n) for n in range(1, 58)]) # Michael S. Branicky, Aug 04 2021
Comments