A110879 Let a_0 = 1 and for n > 0, let a_n be the smallest positive integer not already in the sequence such that (a_0 + a_1 x + a-2x^2 + ....)^(1/3) has integer coefficients. (Hanna's A083349). Let f(n) = n th term in the present sequence. Then a_0 + a_1 x + a_2 x^2 + ... = (1-x)^f(1) (1-x^2)^f(2) (1-x^3)^f(3) ....
-1, -2, -3, 5, 1, -3, -3, 7, 6, -7, -23, 15, 12, 28, -48, -25, -10, 165, 4, -274, -408, 927, 932, -1179, -3745, 2906, 7620, -1471, -21283, 1593, 40509, 18877, -93870, -53839, 153551, 204285, -293171, -462306, 307359, 1227141, -282147, -2368041, -1025023, 5041701, 4100247, -7457707, -15096708
Offset: 1
Keywords
References
- Apostol, T., Introduction to Analytic Number Theory, Springer-Verlag 1976, Theorem 14.8, p. 323.
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Crossrefs
Cf. A083349.
Comments