This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A110905 #11 Sep 11 2021 15:19:18 %S A110905 2,1,1,11,1,6,41,17,8,13,14,107,84,23,4,101,13,89,211,58,83,75,260, %T A110905 414,35,39,871,79,27,42,915,44,349,142,249,404,140,84,1068,693,972, %U A110905 236,1571,1200,298,423,970,183,173,659,523,645,1596,448,40,201,195,1859,427,1732 %N A110905 a(n) is the least number k such that k*prime(n)# - 1 is prime and (k*prime(n)# - 1)^2 - 2 is a Chen prime. %e A110905 2*2-1 = 3, (2*2-1)^2-2 = 7, 3 and 7 are primes, so a(1) = 2. %e A110905 11*2*3*5*7-1 = 2309, (11*2*3*5*7-1)^2-2 = 5331479, 2309 and 5331479 are primes, so a(4) = 11. %t A110905 chenQ[n_] := PrimeQ[n] && PrimeOmega[n+2] <= 2; a[n_] := Module[{p = Product[Prime[i], {i, 1, n}], k = 0}, While[!PrimeQ[k*p - 1] || !chenQ[(k*p-1)^2-2], k++]; k]; Array[a, 60] (* _Amiram Eldar_, Sep 11 2021 *) %o A110905 (PARI) isok(k, q) = if (isprime(k*q-1), my(c=(k*q-1)^2-2); (isprime(c) && (bigomega(c+2)<=2))); %o A110905 a(n) = my(k=1, q=prod(i=1, n, prime(i))); while (!isok(k, q), k++); k; \\ _Michel Marcus_, Sep 11 2021 %Y A110905 Cf. A002110, A109611. %K A110905 nonn %O A110905 1,1 %A A110905 _Pierre CAMI_, Sep 21 2005