cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110926 Smaller of the pair of distinct numbers m and n such that sigma_2(m)=sigma_2(n), where sigma_2(n) is the sum of the squares of all divisors of n.

Original entry on oeis.org

6, 24, 30, 40, 66, 78, 102, 114, 120, 120, 130, 136, 138, 150, 168, 174, 186, 186, 215, 222, 230, 246, 258, 264, 280, 280, 282, 318, 330, 354, 360, 366, 390, 402, 408, 408, 426, 430, 438, 440, 442, 456, 474, 498, 510, 520, 534, 552, 570, 582, 600, 606, 618
Offset: 1

Views

Author

Walter Kehowski, Sep 23 2005

Keywords

Comments

There do not appear to be any pairs (m,n) such that sigma_k(m)=sigma_k(n) for k>2.

Examples

			sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
		

Crossrefs

Programs

  • Maple
    with(numtheory); sigmap := proc(p,n) convert(map(proc(z) z^p end, divisors(n)),`+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2,m); for n from m+1 to 1500 do N:=sigmap(2,n); if N=M then SA2:=[op(SA2),[m,n,N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit

Formula

sigma_2(m)=sigma_2(n), m