cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110929 The common value of sigma_2 for square-amicable numbers, sigma_2(m)=sigma_2(n), m

Original entry on oeis.org

50, 850, 1300, 2210, 6100, 8500, 14500, 18100, 22100, 22100, 22100, 24650, 26500, 32550, 42500, 42100, 48100, 48100, 48100, 68500, 68900, 84100, 92500, 103700, 110500, 110500, 110500, 140500, 158600, 174100, 201110, 186100, 221000, 224500
Offset: 1

Views

Author

Walter Kehowski, Sep 23 2005

Keywords

Examples

			sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
		

Crossrefs

Programs

  • Maple
    with(numtheory); sigmap := proc(p,n) convert(map(proc(z) z^p end, divisors(n)),`+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2,m); for n from m+1 to 1500 do N:=sigmap(2,n); if N=M then SA2:=[op(SA2),[m,n,N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit
  • Mathematica
    a[n_] := Module[{s = DivisorSigma[2, n], ans = {}}, kmax = Ceiling[Sqrt[s]]; Do[If[DivisorSigma[2, k] == s, AppendTo[ans, s]], {k, n + 1, kmax}]; ans];  s = {}; Do[v = a[n]; Do[AppendTo[s,  v[[k]]], {k, 1, Length[v]}], {n, 1, 400}]; s (* Amiram Eldar, Sep 08 2019 *)

Formula

sigma_2(m)=sigma_2(n), m