A110953 Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top.
2, 12, 40, 176, 672, 2752, 10880, 43776, 174592, 699392, 2795520, 11186176, 44736512, 178962432, 715816960, 2863333376, 11453202432, 45813071872, 183251763200, 733008101376, 2932030308352, 11728125427712, 46912493322240, 187649990066176, 750599926710272
Offset: 1
References
- Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p. 16.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,8).
Programs
-
PARI
g(n,k,typ) = /* typ = 1 numerator, 2 denominator, k = multiple of denom */ { local(a,b,x,tmp); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,print1(a","),print1(b",")) ); print(); print(a/b+.) }
-
Python
from itertools import islice def A110953_gen(): # generator of terms a, b = 1, 1 while True: a, b = a+9*b, a+b yield b A110953_list = list(islice(A110953_gen(),30)) # Chai Wah Wu, Apr 15 2025
Formula
Given a(0)=1, b(0)=1 then for i>=1, a(i)/b(i) = (a(i-1)+ 9*b(i-1)) / (a(i-1) + b(i-1)).
From Chai Wah Wu, Apr 15 2025: (Start)
a(n) = 2*a(n-1) + 8*a(n-2) for n > 2.
G.f.: x*(-8*x - 2)/((2*x + 1)*(4*x - 1)). (End)
Extensions
a(21)-a(25) from Chai Wah Wu, Apr 15 2025
Comments