cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110953 Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top.

Original entry on oeis.org

2, 12, 40, 176, 672, 2752, 10880, 43776, 174592, 699392, 2795520, 11186176, 44736512, 178962432, 715816960, 2863333376, 11453202432, 45813071872, 183251763200, 733008101376, 2932030308352, 11728125427712, 46912493322240, 187649990066176, 750599926710272
Offset: 1

Views

Author

Cino Hilliard, Sep 25 2005

Keywords

Comments

The limit of the sequence of fractions used to generate this sequence is 3.
Essentially the same as A003683. - R. J. Mathar, May 25 2009

References

  • Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p. 16.

Programs

  • PARI
    g(n,k,typ) = /* typ = 1 numerator, 2 denominator, k = multiple of denom */ { local(a,b,x,tmp); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,print1(a","),print1(b",")) ); print(); print(a/b+.) }
    
  • Python
    from itertools import islice
    def A110953_gen(): # generator of terms
        a, b = 1, 1
        while True:
            a, b = a+9*b, a+b
            yield b
    A110953_list = list(islice(A110953_gen(),30)) # Chai Wah Wu, Apr 15 2025

Formula

Given a(0)=1, b(0)=1 then for i>=1, a(i)/b(i) = (a(i-1)+ 9*b(i-1)) / (a(i-1) + b(i-1)).
From Chai Wah Wu, Apr 15 2025: (Start)
a(n) = 2*a(n-1) + 8*a(n-2) for n > 2.
G.f.: x*(-8*x - 2)/((2*x + 1)*(4*x - 1)). (End)

Extensions

a(21)-a(25) from Chai Wah Wu, Apr 15 2025