cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111011 Primes in A002533.

Original entry on oeis.org

7, 19, 73, 241, 411379, 693110401, 80746825394092993, 15848109838244286131940714481, 12238279486576766124458805567902551228138920205718424019, 1732765524527243824670663837908764472971413888795440694899, 20618141429646301085064054485889973597180353561103310272561, 2919234250884982146911220973819117919577845597870261813393281
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005

Keywords

Comments

Starting with the fraction 1/1, generate the sequence of fractions A002533(i)/A002532(i) according to the rule: "add top and bottom to get the new bottom, add top and 6 times bottom to get the new top."
The prime numerators of these fractions are listed here, at locations i= 2, 3, 4, 5, 11, 17, 32, 53,... showing prime(4), prime(8), prime(21), prime(53), prime(34719),..
Is there an infinity of primes in this sequence?
a(17) = A002533(7993), which has 4298 digits so can't be included in a b-file. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.

Crossrefs

Programs

  • Maple
    B[0]:= 1: B[1]:= 1: P:= NULL: count:= 0:
    for n from 2 while count < 16 do
      B[n]:= 2*B[n-1]+5*B[n-2];
      if isprime(A[n]) then count:= count+1; P:= P, B[n];  fi
    od:
    P; # Robert Israel, May 03 2024
  • Mathematica
    Select[LinearRecurrence[{2, 5}, {1, 1}, 125] ,PrimeQ[#]&] (* James C. McMahon, May 02 2024 *)
  • PARI
    primenum(n,k,typ) = \\ k=mult,typ=1 num,2 denom. output prime num or denom.
    { local(a,b,x,tmp,v); a=1;b=1;
    for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) );
    print(); print(a/b+.) }

Formula

A002533 INTERSECT A000040.

Extensions

Simplified the definition, listed some A002533 indices. - R. J. Mathar, Sep 16 2009
a(10)-a(12) from James C. McMahon, May 02 2024