This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111015 #46 Jun 30 2024 03:22:22 %S A111015 11,31,601,10711,45281,3245551,4057691201,87818089575031, %T A111015 813086055916584907683448771376472778745411281, %U A111015 16071419731004292876206308878779566599797733387541964081866111137961,2259503969983505641049567911781316556859822340375755577282633545849516496717511 %N A111015 Primes in A002535. %C A111015 Original name: Starting with the fraction 1/1, this sequence gives the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 10 times bottom to get the new top. %C A111015 Conjecture: Starting with 1/1, there are infinitely many primes in the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 2k times bottom to get the new top, for k>=1. %C A111015 a(12) has 5304 digits and is not included here. - _Bill McEachen_, Jan 22 2023 %C A111015 a(12) = A002535(8563) = 1.0733...*10^5303. - _Amiram Eldar_, Jun 30 2024 %D A111015 John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16. %F A111015 Given t(0)=1, b(0)=1 then for i = 1, 2, ..., t(i)/b(i) = (t(i-1) + 10*b(i-1)) /(t(i-1) + b(i-1)), and sequence consists of the t(i) that are prime. %e A111015 The raw ratios begin 1/1, 11/2, 31/13, 161/44, 601/205, ... = A002535/A002534. Among the numerators, 11, 31, and 601 are primes and are the first three terms here. %t A111015 Select[Numerator/@NestList[(10Denominator[#]+Numerator[#])/ (Denominator[#]+ Numerator[#])&,1/1,200],PrimeQ] (* _Harvey P. Dale_, Sep 15 2011 *) %t A111015 Select[LinearRecurrence[{2, 9}, {1, 1}, 150], PrimeQ] (* _Amiram Eldar_, Jun 30 2024 *) %o A111015 (PARI) \\ k=mult,typ=1 num,2 denom. output prime num or denom %o A111015 primenum(n,k,typ) = {local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v), print1(v, ", "); ) ); print(); print(a/b+.)} %o A111015 primenum(100, 10, 1) %o A111015 (Python) %o A111015 from sympy import isprime %o A111015 from itertools import islice %o A111015 from fractions import Fraction %o A111015 def agen(): # generator of terms %o A111015 f = Fraction(1, 1) %o A111015 while True: %o A111015 n, d = f.numerator + 10*f.denominator, f.numerator + f.denominator %o A111015 if isprime(n): yield n %o A111015 f = Fraction(n, d) %o A111015 print(list(islice(agen(), 11))) # _Michael S. Branicky_, Jan 23 2023 %Y A111015 Cf. A002534, A002535. %K A111015 easy,nonn %O A111015 1,1 %A A111015 _Cino Hilliard_, Oct 02 2005 %E A111015 a(11) from _Michel Marcus_, Jan 23 2023 %E A111015 Name simplified by _Sean A. Irvine_, Feb 25 2023