This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111042 #29 Jun 23 2025 00:41:40 %S A111042 903,2545,4533,5067,8759,9071,9269,10353,11035,11625,11865,13629, %T A111042 15395,15493,16803,17955,18575,18637,19149,24189,35547,36941,37911, %U A111042 42111,43613,45179,50717,52383,53367,54159,58285,59903,61333,62373,65109,67807,68483,70109,72575 %N A111042 Odd terms of A059756. %C A111042 Dowe (1989) conjectured that all Erdős-Woods numbers (A059756) are even. The first counterexamples were found in 2001 by Marcin Bienkowski, Mirek Korzeniowski and Krysztof Lorys, and independently by Nik Lygeros (Cégielski et al., 2003). - _Amiram Eldar_, Jun 20 2021 %H A111042 Bertram Felgenhauer, <a href="/A111042/b111042.txt">Table of n, a(n) for n = 1..227</a> %H A111042 Patrick Cégielski, François Heroult and Denis Richard, <a href="http://dx.doi.org/10.1016/S0304-3975(02)00444-9">On the amplitude of intervals of natural numbers whose every element has a common prime divisor with at least an extremity</a>, Theor. Comp. Sci., Vol. 303, No 1 (2003), pp. 53-62. %H A111042 David L. Dowe, <a href="http://dx.doi.org/10.1017/S1446788700031220">On the existence of sequences of co-prime pairs of integers</a>, J. Austral. Math. Soc. Ser. A, Vol. 47, No. 1 (1989), pp. 84-89. %H A111042 Bertram Felgenhauer, <a href="https://www.int-e.eu/oeis/">Some OEIS computations</a>. (Includes the terms of this sequence up to 10^6) %H A111042 Nik Lygeros, <a href="https://lygeros.org/737-en/">737 - From the computation of Erdös-Woods Numbers to the quadratic Goldbach Conjecture</a>, 2012. %Y A111042 Cf. A059756. %K A111042 nonn,hard %O A111042 1,1 %A A111042 _Victor S. Miller_, Oct 08 2005 %E A111042 Corrected by _T. D. Noe_, Nov 02 2006 %E A111042 More terms from Felgenhauer added by _Amiram Eldar_, Jun 20 2021