cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111053 Number of permutations which avoid the patterns 1324 and (2143 with Bruhat restriction {2<->3}). Also the number of permutations whose graphs are acyclic.

This page as a plain text file.
%I A111053 #47 Jan 20 2025 22:48:31
%S A111053 1,2,6,22,89,379,1661,7405,33367,151398,690147,3156112,14465746,
%T A111053 66409493,305232025,1404129530,6463476538,29767212095,137142651679,
%U A111053 632021380433,2913316615372,13431328632593,61931182541194,285592218851606,1317104663887309,6074682489939359,28018852961838675,129239701278757210
%N A111053 Number of permutations which avoid the patterns 1324 and (2143 with Bruhat restriction {2<->3}). Also the number of permutations whose graphs are acyclic.
%D A111053 S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399, Table A.7.
%H A111053 H. Abe and S. Billey, <a href="http://www.math.washington.edu/~billey/papers/abe.billey.pdf">Consequences of the Lakshmibai-Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry</a>, 2014.
%H A111053 M. Bousquet-Mélou and S. Butler, <a href="https://arxiv.org/abs/math/0603617">Forest-like permutations</a>, arXiv:math/0603617 [math.CO], 2006.
%H A111053 S. Butler, <a href="https://www.semanticscholar.org/paper/On-permutations-which-are-1324-and-2143-avoiding-Butler/47ff2e8d8461087e56de6840058a5dffd1290196">On permutations which are 1324 and {overline 2143} avoiding</a>, 2005.
%H A111053 S. B. Ekhad and M. Yang, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/oMathar1maple12.txt">Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences</a>, (2017).
%H A111053 Haruhisa Enomoto, <a href="https://arxiv.org/abs/2002.09205">Bruhat inversions in Weyl groups and torsion-free classes over preprojective algebras</a>, arXiv:2002.09205 [math.RT], 2020.
%F A111053 G.f.: ((1-x)*(1-4*x-2*x^2)-(1-5*x)*sqrt(1-4*x))/(2*(1-5*x+2*x^2-x^3)). - _Ralf Stephan_, May 09 2007
%F A111053 G.f.: 2 * x * (1 - 4*x - x^2) / ((1 - x) * (1 - 4*x - 2*x^2) + (1 - 5*x) * sqrt(1 - 4*x)). - _Michael Somos_, Jan 12 2012
%F A111053 G.f. is the power series composition of g.f. A204200 and g.f. A000108 (Catalan) with offset 1. - _Michael Somos_, Jan 12 2012
%F A111053 Conjecture: n*(n+5)*a(n) +3*(20-13*n-3*n^2)*a(n-1) +2*(11*n^2+40*n-150)*a(n-2) +3*(40-11*n-3*n^2)*a(n-3) +2*(n+6)*(2*n-5)*a(n-4)=0. - _R. J. Mathar_, Aug 14 2012
%e A111053 x + 2*x^2 + 6*x^3 + 22*x^4 + 89*x^5 + 379*x^6 + 1661*x^7 + 7405*x^8 + ...
%t A111053 a = DifferenceRoot[Function[{a, n}, {(4n^2 + 46n + 60)a[n] + (-9n^2 - 105n - 156)a[n+1] + (22n^2 + 256n + 372)a[n+2] + (-9n^2 - 111n - 240)a[n+3] + (n+4)(n+9)a[n+4] == 0, a[1] == 1, a[2] == 2, a[3] == 6, a[4] == 22}]];
%t A111053 Array[a, 28] (* _Jean-François Alcover_, Dec 17 2018 *)
%o A111053 (PARI) x='x+O('x^66);
%o A111053 gf=((1-x)*(1-4*x-2*x^2)-(1-5*x)*sqrt(1-4*x))/(2*(1-5*x+2*x^2-x^3));
%o A111053 Vec(gf) /* _Joerg Arndt_, Jun 25 2011 */
%o A111053 (PARI) {a(n) = if( n<0, 0, polcoeff( 2 * x * (1 - 4*x - x^2) / ((1 - x) * (1 - 4*x - 2*x^2) + (1 - 5*x) * sqrt(1 - 4*x + x * O(x^n))), n))} /* _Michael Somos_, Jan 12 2012 */
%Y A111053 Cf. A204200.
%K A111053 nonn
%O A111053 1,2
%A A111053 _Steve Butler_, Oct 06 2005
%E A111053 More terms from _Joerg Arndt_, Jun 25 2011