cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111061 Begin with 1,2 In binary 1, 10. To get the sequence, left pad binary number with its precedent: 1,10, 110, 10110, 11010110, 1011011010110, etc. Note the number of bits of the n-th term is the (n-1)st Fibonacci number. Now convert back to decimal 1,2,6,22,214,5846, ...

Original entry on oeis.org

1, 2, 6, 22, 214, 5846, 1758934, 12261709526, 30218268284999382, 441774643647969157361358550, 18704202113934148330876898021651431451973334, 9851903763165025237741730894918087846312835864942483209357642906130134
Offset: 1

Views

Author

Rosario Trifiletti (rtrif(AT)aol.com), Oct 07 2005

Keywords

Comments

Another way to represent these numbers is as a binary pyramid
1
10
110
10110
11010110
1011011010110
110101101011011010110
1011011010110110101101011011010110
110101101011011010110101101101011011010110101101101011010110110101101101011010110110101101101011010110110101101011011010110110101101011011010110
Obviously 10110 plays a key role in this sequence ... Call M(n) the n-term in the sequence M(n)clearly increases monotonically but M(n+1)/M(n) does not. The first few values of M(n+1)/M(n) are : 2 3 35.666.. 27.31775701 300.8782073 6971.102683 2464441.701 512 Does this converge? What to? I propose calling them FIFO-nacci numbers ...
The length of each binary term above is a Fibonacci number (A000045). The number of decimal digits is: 1, 1, 1, 2, 3, 4, 7, 11, 17, 27, 44, 70, 114, 184, 298, 481, 778, 1259, 2037, 3295, 5332, 8627, 13959, 22585, 36543, 59128, 95671, 154799, 250469, 405268, 655737, 1061004, 1716740, 2777744, 4494484, 7272228, 11766712, ..., . - Robert G. Wilson v, Aug 24 2007

Programs

  • Mathematica
    f[l_] := Append[l, FromDigits[ Join[ IntegerDigits[l[[ -2]], 2], IntegerDigits[l[[ -1]], 2]], 2]]; Nest[f, {1, 2}, 10] (* Robert G. Wilson v, Aug 24 2007 *)

Extensions

More terms from Robert G. Wilson v, Aug 24 2007