This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111062 #68 Feb 12 2025 11:56:13 %S A111062 1,1,1,2,2,1,4,6,3,1,10,16,12,4,1,26,50,40,20,5,1,76,156,150,80,30,6, %T A111062 1,232,532,546,350,140,42,7,1,764,1856,2128,1456,700,224,56,8,1,2620, %U A111062 6876,8352,6384,3276,1260,336,72,9,1,9496,26200,34380,27840,15960,6552,2100,480,90,10,1 %N A111062 Triangle T(n, k) = binomial(n, k) * A000085(n-k), 0 <= k <= n. %C A111062 Triangle related to A000085. %C A111062 Riordan array [exp(x(2+x)/2),x]. - _Paul Barry_, Nov 05 2008 %C A111062 Array is exp(S+S^2/2) where S is A132440 the infinitesimal generator for Pascal's triangle. T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then partitioning the remaining n-k elements into sets each of size 1 or 2. Cf. A122832. - _Peter Bala_, May 14 2012 %C A111062 T(n,k) is equal to the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the partial Brauer monoid of degree n. - _James East_, Aug 17 2015 %H A111062 Muniru A Asiru, <a href="/A111062/b111062.txt">Table of n, a(n) for n = 0..1325</a> %H A111062 Igor Dolinka, James East, Athanasios Evangelou, Des FitzGerald, Nicholas Ham, James Hyde, and Nicholas Loughlin, <a href="http://arxiv.org/abs/1408.2021">Enumeration of idempotents in diagram semigroups and algebras</a>, arXiv:1408.2021 [math.GR], 2014. %H A111062 Igor Dolinka, James East, Athanasios Evangelou, Des FitzGerald, Nicholas Ham, James Hyde, and Nicholas Loughlin, <a href="http://dx.doi.org/10.1016/j.jcta.2014.11.008">Enumeration of idempotents in diagram semigroups and algebras</a>, J. Combin. Theory Ser. A 131 (2015), 119-152. %H A111062 Tom Halverson and Theodore N. Jacobson, <a href="https://arxiv.org/abs/1808.08118">Set-partition tableaux and representations of diagram algebras</a>, arXiv:1808.08118 [math.RT], 2018. %F A111062 Sum_{k>=0} T(m, k)*T(n, k)*k! = T(m+n, 0) = A000085(m+n). %F A111062 Sum_{k=0..n} T(n, k) = A005425(n). %F A111062 Apparently satisfies T(n,m) = T(n-1,m-1) + T(n-1,m) + (m+1) * T(n-1,m+1). - _Franklin T. Adams-Watters_, Dec 22 2005 [corrected by _Werner Schulte_, Feb 12 2025] %F A111062 T(n,k) = (n!/k!)*Sum_{j=0..n-k} C(j,n-k-j)/(j!*2^(n-k-j)). - _Paul Barry_, Nov 05 2008 %F A111062 G.f.: 1/(1-xy-x-x^2/(1-xy-x-2x^2/(1-xy-x-3x^2/(1-xy-x-4x^2/(1-... (continued fraction). - _Paul Barry_, Apr 23 2009 %F A111062 T(n,k) = C(n,k)*Sum_{j=0..n-k} C(n-k,j)*(n-k-j-1)!! where m!!=0 if m is even. - _James East_, Aug 17 2015 %F A111062 From _Tom Copeland_, Jun 26 2018: (Start) %F A111062 E.g.f.: exp[t*p.(x)] = exp[t + t^2/2] e^(x*t). %F A111062 These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x + 1 + D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations. %F A111062 The transpose of the production matrix gives a matrix representation of the raising operator R. %F A111062 exp(D + D^2/2) x^n= e^(D^2/2) (1+x)^n = h_n(1+x) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A000085(n) and h_n(x) the modified Hermite polynomials of A099174. %F A111062 A159834 with the e.g.f. exp[-(t + t^2/2)] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x - 1 - D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End) %e A111062 Rows begin: %e A111062 1; %e A111062 1, 1; %e A111062 2, 2, 1; %e A111062 4, 6, 3, 1; %e A111062 10, 16, 12, 4, 1; %e A111062 26, 50, 40, 20, 5, 1; %e A111062 76, 156, 150, 80, 30, 6, 1; %e A111062 232, 532, 546, 350, 140, 42, 7, 1; %e A111062 764, 1856, 2128, 1456, 700, 224, 56, 8, 1; %e A111062 2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1; %e A111062 From _Paul Barry_, Apr 23 2009: (Start) %e A111062 Production matrix is: %e A111062 1, 1, %e A111062 1, 1, 1, %e A111062 0, 2, 1, 1, %e A111062 0, 0, 3, 1, 1, %e A111062 0, 0, 0, 4, 1, 1, %e A111062 0, 0, 0, 0, 5, 1, 1, %e A111062 0, 0, 0, 0, 0, 6, 1, 1, %e A111062 0, 0, 0, 0, 0, 0, 7, 1, 1, %e A111062 0, 0, 0, 0, 0, 0, 0, 8, 1, 1 (End) %e A111062 From _Peter Bala_, Feb 12 2017: (Start) %e A111062 The infinitesimal generator has integer entries and begins %e A111062 0 %e A111062 1 0 %e A111062 1 2 0 %e A111062 0 3 3 0 %e A111062 0 0 6 4 0 %e A111062 0 0 0 10 5 0 %e A111062 0 0 0 0 15 6 0 %e A111062 ... %e A111062 and is the generalized exponential Riordan array [x + x^2/2!,x].(End) %t A111062 a[n_] := Sum[(2 k - 1)!! Binomial[n, 2 k], {k, 0, n/2}]; Table[Binomial[n, k] a[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Aug 20 2015, after _Michael Somos_ at A000085 *) %o A111062 (Sage) %o A111062 def A111062_triangle(dim): %o A111062 M = matrix(ZZ,dim,dim) %o A111062 for n in (0..dim-1): M[n,n] = 1 %o A111062 for n in (1..dim-1): %o A111062 for k in (0..n-1): %o A111062 M[n,k] = M[n-1,k-1]+M[n-1,k]+(k+1)*M[n-1,k+1] %o A111062 return M %o A111062 A111062_triangle(9) # _Peter Luschny_, Sep 19 2012 %o A111062 (GAP) Flat(List([0..10],n->List([0..n],k->(Factorial(n)/Factorial(k))*Sum([0..n-k],j->Binomial(j,n-k-j)/(Factorial(j)*2^(n-k-j)))))); # _Muniru A Asiru_, Jun 29 2018 %Y A111062 Cf. A000085, A005425 (row sums), A007318, A013989, A122832, A132440. %Y A111062 Cf. A099174, A133314, A159834 (inverse matrix). %K A111062 easy,nonn,tabl %O A111062 0,4 %A A111062 _Philippe Deléham_, Oct 07 2005 %E A111062 Corrected by _Franklin T. Adams-Watters_, Dec 22 2005 %E A111062 10th row added by _James East_, Aug 17 2015