cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111064 Numbers n such that the sum of the digits of the n-th Fibonacci number written in bases 2, 3, 5 and 7 is prime.

This page as a plain text file.
%I A111064 #15 Sep 09 2021 11:51:19
%S A111064 7,8,10,17,47,61,70,170,185,299,766,950,1247,1669,1879,2063,2090,2701,
%T A111064 3071,5809,6190,7057,7409,8410,12754,13303,13421,14533,16250,18793,
%U A111064 24766,24895,27370,28594,28870,29093,29189,30647,31481,36334,38123,38957
%N A111064 Numbers n such that the sum of the digits of the n-th Fibonacci number written in bases 2, 3, 5 and 7 is prime.
%e A111064 21 is the 8th Fibonacci number. Written in bases 2,3,5,7 we obtain 10101, 210, 41 and 30. The sum of the digits of each of this representations is prime, so 8 is an element of the sequence.
%t A111064 fQ[n_] := Union@PrimeQ[Plus @@@ IntegerDigits[ Fibonacci@n, {2, 3, 5, 7}]] == {True}; Select[ Range[39285], fQ[ # ] &] (* _Robert G. Wilson v_ *)
%t A111064 Select[Range[40000],AllTrue[Total/@IntegerDigits[Fibonacci[#],{2,3,5,7}],PrimeQ]&] (* _Harvey P. Dale_, Sep 09 2021 *)
%o A111064 (MuPAD) for n from 1 to 1500 do a := numlib::fibonacci(n); if numlib::proveprime(numlib::sumOfDigits(a,2)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,3)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,5)) = TRUE then if numlib::proveprime(numlib::sumOfDigits(a,7)) = TRUE then print(n); end_if; end_if; end_if; end_if; end_for;
%Y A111064 Cf. A004685, A004686, A004688, A004690.
%K A111064 nonn,base
%O A111064 1,1
%A A111064 _Stefan Steinerberger_, Nov 12 2005
%E A111064 More terms from _Robert G. Wilson v_, Nov 14 2005
%E A111064 Corrected by _Harvey P. Dale_, Sep 09 2021