cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A111158 Number of 5 X 5 magic squares with line sum n.

Original entry on oeis.org

1, 20, 449, 6792, 67063, 484419, 2750715, 12919671, 52083292, 185179593, 592791088, 1736022657, 4710111660, 11959634412, 28654640036, 65224656452, 141850935657, 296163412400, 596041392921, 1160330645548, 2191579277799, 4026627536451, 7213267409435
Offset: 0

Views

Author

N. J. A. Sloane, using g.f. supplied by Jesús De Loera (deloera(AT)math.ucdavis.edu), Oct 22 2005

Keywords

References

  • Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.

Crossrefs

Formula

G.f.: -(1 + 28*t + 639*t^2 + 11050*t^3 + 136266*t^4 + 1255833*t^5 + 9120009*t^6 + 54389347*t^7 + 274778754*t^8 + 1204206107*t^9 + 4663304831*t^10 + 16193751710*t^11 + 51030919095*t^12 + 147368813970*t^13 + 393197605792*t^14 + 975980866856*t^15 + 2266977091533*t^16 + 4952467350549*t^17 + 10220353765317*t^18 + 20000425620982*t^19 + 37238997469701*t^20 + 66164771134709*t^21 + 112476891429452*t^22 + 183365550921732*t^23 + 287269293973236*t^24 + 433289919534912*t^25 + 630230390692834*t^26 + 885291593024017*t^27 + 1202550133880678*t^28 + 1581424159799051*t^29 + 2015395674628040*t^30 + 2491275358809867*t^31 + 2989255690350053*t^32 + 3483898479782320*t^33 + 3946056312532923*t^34 + 4345559454316341*t^35 + 4654344257066635*t^36 + 4849590327731195*t^37 + 4916398325176454*t^38 + 4849590327731195*t^39 + 4654344257066635*t^40 + 4345559454316341*t^41 + 3946056312532923*t^42 + 3483898479782320*t^43 + 2989255690350053*t^44 + 2491275358809867*t^45 + 2015395674628040*t^46 + 1581424159799051*t^47 + 1202550133880678*t^48 + 885291593024017*t^49 + 630230390692834*t^50 + 433289919534912*t^51 + 287269293973236*t^52 + 183365550921732*t^53 + 112476891429452*t^54 + 66164771134709*t^55 + 37238997469701*t^56 + 20000425620982*t^57 + 10220353765317*t^58 + 4952467350549*t^59 + 2266977091533*t^60 + 975980866856*t^61 + 393197605792*t^62 + 147368813970*t^63 + 51030919095*t^64 + 16193751710*t^65 + 4663304831*t^66 + 1204206107*t^67 + 274778754*t^68 + 54389347*t^69 + 9120009*t^70 + 1255833*t^71 + 136266*t^72 + 11050*t^73 + 639*t^74 + 28*t^75 + t^76) / ((-1 + t^2)^6*(t^2 + t + 1)^7*(t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)^2*(t^6 + t^3 + 1)*(t^4 + t^3 + t^2 + t + 1)^4*(-1 + t)^9*(t + 1)^4*(t^2 + 1)^4).
Showing 1-1 of 1 results.