cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111093 Like sequence A111072 but moving right by the squares of the sequence of positive integers.

This page as a plain text file.
%I A111093 #24 Apr 19 2024 11:14:21
%S A111093 0,1,6,10,10,15,16,16,20,25,30,36,36,45,50,50,56,61,70,70,70,71,76,80,
%T A111093 80,85,86,86,90,95,100,106,106,115,120,120,126,131,140,140,140,141,
%U A111093 146,150,150,155,156,156,160,165,170,176,176,185,190,190,196,201,210,210
%N A111093 Like sequence A111072 but moving right by the squares of the sequence of positive integers.
%C A111093 Sequences of the form a(n+1) = a(n) + (a(n) - a(n-1) + (n+1)^k mod 10) mod 10 with a(0)=0, a(1)=1 and k=1,2,3,4,5, etc. are identical if the exponents "k" differ by 4. Therefore this sequence, where k = 2, is the same as those with exponents 6, 10, 14, 18, etc. - _Paolo P. Lava_, Sep 29 2006
%D A111093 G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 62.
%F A111093 a(n+1) = a(n) + ( a(n) - a(n-1) + (n+1)^2 mod 10 ) mod 10, with a(0)=0, a(1)=1.
%F A111093 Conjectures from _Chai Wah Wu_, Jan 28 2024: (Start)
%F A111093 a(n) = a(n-1) + a(n-5) - a(n-6) - a(n-10) + a(n-11) + a(n-15) - a(n-16) for n > 15.
%F A111093 G.f.: x*(9*x^12 + 5*x^11 + 6*x^10 + 5*x^8 - 5*x^6 + 5*x^4 + 4*x^2 + 5*x + 1)/(x^16 - x^15 - x^11 + x^10 + x^6 - x^5 - x + 1). (End)
%e A111093 a(8) = 20 because a(7) - a(6) + (8^2 mod 10) = 16 - 16 + 4 = 4 and a(7) + (4 mod 10) = 16 + 4 = 20.
%e A111093 Jumping by the squares of the sequence of positive integers we move to the numbers 0, 1, 5, 4, 0, 5, 1, 0, 4, 5, etc. Summing the numbers we obtain 0, 0+1=1, 1+5=6, 6+4=10, 10+0=10, 10+5=15, etc.
%p A111093 ANM:=proc(N) global anplus1,anminus1; local an,i; anminus1:=0; an:=1; print (anminus1, an); for i from 2 by 1 to N do anplus1:=an+((an-anminus1+ i^2 mod 10) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);
%Y A111093 Cf. A111072.
%K A111093 easy,nonn
%O A111093 0,3
%A A111093 _Giorgio Balzarotti_ & _Paolo P. Lava_, Oct 13 2005