This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111096 #6 Jul 29 2022 09:01:28 %S A111096 16,232,59281,10059281,4049575228945,1950244643588320, %T A111096 30041944445326335483061,32095019157463691981298869, %U A111096 142108579247039194637916834814494,108199957883829576141601541930838816381470,118558455387984539329682688832638841343258239487 %N A111096 Partial sums of A137701. %C A111096 a(n) is prime for n = 3, 4, ..., a(n) is semiprime for n = 7, 8, 11, ... %F A111096 a(n) = Sum_{i=1..n} A001358(i)^A000040(i). %e A111096 a(1) = 16 because semiprime(1)^prime(1) = 4^2 = 16. %e A111096 a(2) = 232 because 4^2 + 6^3 = 232. %e A111096 a(3) = 59281 = 4^2 + 6^3 + 9^5, which is a prime. %e A111096 a(4) = 10059281 = 4^2 + 6^3 + 9^5 + 10^7, which is a prime. %e A111096 a(7) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 = 428081461 * 70178102025601, which is semiprime. %e A111096 a(8) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 + 22^19 = 47 * 682872748031142382580827, which is semiprime. %e A111096 a(11) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 + 22^19 + 25^23 + 26^29 + 33^31 = 17 * 6974026787528502313510746401919931843721072911 which is semiprime. %Y A111096 Cf. A000040, A001358, A137701, A125580. %K A111096 easy,nonn,less %O A111096 1,1 %A A111096 _Jonathan Vos Post_, Oct 13 2005