cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111106 Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 13 2005, Dec 20 2008

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Rows begin:
  1;
  0,       1;
  0,       1,      1;
  0,       3,      2,     1;
  0,      15,      7,     3,    1;
  0,     105,     36,    12,    4,    1;
  0,     945,    249,    64,   18,    5,   1;
  0,   10395,   2190,   441,  100,   25,   6,  1:
  0,  135135,  23535,  3807,  691,  145,  33,  7, 1;
  0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
		

Crossrefs

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022

Formula

T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009