A111106 Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
Offset: 0
Examples
Rows begin: 1; 0, 1; 0, 1, 1; 0, 3, 2, 1; 0, 15, 7, 3, 1; 0, 105, 36, 12, 4, 1; 0, 945, 249, 64, 18, 5, 1; 0, 10395, 2190, 441, 100, 25, 6, 1: 0, 135135, 23535, 3807, 691, 145, 33, 7, 1; 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
Crossrefs
Programs
-
Maple
# Uses function PMatrix from A357368. PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022
Formula
T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009
Comments