cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111127 Triangle read by rows: T(k,s)=(2k-1)(2k+1)binomial(2k-s-1,2k-2s-1)/(2k-2s+1); k>=1, 0<=s<=k-1.

This page as a plain text file.
%I A111127 #9 Mar 07 2016 21:43:57
%S A111127 1,3,10,5,28,35,7,54,126,84,9,88,297,396,165,11,130,572,1144,1001,286,
%T A111127 13,180,975,2600,3510,2184,455,15,238,1530,5100,9350,9180,4284,680,17,
%U A111127 304,2261,9044,20995,28424,21318,7752,969,19,378,3192,14896,41895,72618
%N A111127 Triangle read by rows: T(k,s)=(2k-1)(2k+1)binomial(2k-s-1,2k-2s-1)/(2k-2s+1); k>=1, 0<=s<=k-1.
%H A111127 K. Dilcher and K. B. Stolarsky, <a href="http://www.maa.org/programs/maa-awards/writing-awards/a-pascal-type-triangle-characterizing-twin-primes">A Pascal-type triangle characterizing twin primes</a>, Amer. Math. Monthly, 112 (2005), 673-681.
%e A111127 Triangle starts:
%e A111127 1;
%e A111127 3,10;
%e A111127 5,28,35;
%e A111127 7,54,126,84;
%e A111127 9,88,297,396,165;
%p A111127 T:=(k,s)->binomial(2*k-s-1,2*k-2*s-1)*(2*k-1)*(2*k+1)/(2*k-2*s+1): for k from 1 to 10 do seq(T(k,s),s=0..k-1) od; # yields sequence in triangular form; _Emeric Deutsch_, Feb 02 2006
%Y A111127 Mirror image of A111126.
%K A111127 nonn,easy,tabl
%O A111127 1,2
%A A111127 _N. J. A. Sloane_, Oct 16 2005
%E A111127 More terms from _Emeric Deutsch_, Feb 02 2006