cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111138 Let b(n) denote the number of nontriangular numbers less than or equal to n. Then a(n) = b(n-1) + a(b(n-1)), with a(1) = a(2) = 0, a(3) = 1.

This page as a plain text file.
%I A111138 #31 Oct 27 2024 09:27:39
%S A111138 0,0,1,1,2,4,4,5,7,10,10,11,13,16,20,20,21,23,26,30,35,35,36,38,41,45,
%T A111138 50,56,56,57,59,62,66,71,77,84,84,85,87,90,94,99,105,112,120,120,121,
%U A111138 123,126,130,135,141,148,156,165,165,166,168,171,175,180,186,193,201
%N A111138 Let b(n) denote the number of nontriangular numbers less than or equal to n. Then a(n) = b(n-1) + a(b(n-1)), with a(1) = a(2) = 0, a(3) = 1.
%C A111138 For a subgroup H of order p^n (p an odd prime) of the subgroup generated by all commutators [x_j,x_i] in the relatively free group F of class three and exponent p, freely generated by x_1, x_2,..., x_k, (k sufficiently large) the minimum size of the subgroup of [H,F] of F_3 is p^{kn - a(n)}.
%C A111138 The sequence arises when finding a purely numerical sufficient condition for the capability of p-groups of class two and exponent p, where p is an odd prime.
%C A111138 Partial sums of A002262. - _Gionata Neri_, Sep 04 2015
%H A111138 Arturo Magidin, <a href="http://arxiv.org/abs/math.GR/0506578">Capable groups of prime exponent and class two II</a>, arXiv:math/0506578 [math.GR], 2005.
%F A111138 If we write n = (m choose 2) + s, 0<=s<=m, then a(n)=(m choose 3) + (s choose 2).
%F A111138 a(N) = Comb(T,2)+Comb(R,3) where R:=Round(Sqrt(2*N)) and T:=N-Comb(R,2). - _Gerald Hillier_, Nov 18 2017
%e A111138 a(31) = b(30) + a(b(30)) = 23 + a(23) = 23 + b(22) + a(b(22)) = 23 + 16 + a(16) = 39 + b(15) + a(b(15)) = 39 + 10 + a(10) = 49 + b(9) + a(b(9)) = 49 + 6 + a(6) = 55 + b(5) + a(b(5)) = 55 + 3 + a(3) = 58 + 1 = 59.
%t A111138 a[1] = a[2] = 0; a[3] = 1; a[n_] := a[n] = b[n - 1] + a[b[n - 1]]; b[n_] := n - Floor[(Sqrt[8n + 1] - 1)/2]; Array[a, 64] (* _Robert G. Wilson v_, Feb 01 2006 *)
%o A111138 (PARI) a(n) = my(r,m=sqrtint(n<<1,&r)); if(r<m, r+=m, r-=m;m++); binomial(m,3) + binomial(r>>1,2); \\ _Kevin Ryde_, Oct 26 2024
%Y A111138 Cf. A083920.
%K A111138 nonn,easy
%O A111138 1,5
%A A111138 _Arturo Magidin_, Oct 17 2005; definition corrected Feb 01 2006
%E A111138 More terms from _Robert G. Wilson v_, Feb 01 2006