This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111152 #26 Feb 25 2023 06:07:24 %S A111152 6,5906,68101,164634913,69071941639 %N A111152 Smallest number that is a sum of two n-th powers of positive rationals but not of two n-th powers of positive integers. %C A111152 a(6) and a(7) are only conjectures; the earlier terms have (apparently) been proved. %H A111152 A. Bremner and P. Morton, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002225409">A new characterization of the integer 5906</a>, Manuscripta Math. 44 (1983) 187-229; Math. Rev. 84i:10016. %H A111152 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/csolve/fermat.pdf">On a Generalized Fermat-Wiles Equation</a> [broken link] %H A111152 Steven R. Finch, <a href="http://web.archive.org/web/20010602030546/http://www.mathsoft.com/asolve/fermat/fermat.html">On a Generalized Fermat-Wiles Equation</a> [From the Wayback Machine] %H A111152 Alexis Newton and Jeremy Rouse, <a href="https://arxiv.org/abs/2101.09390">Integers that are sums of two rational sixth powers</a>, arXiv:2101.09390 [math.NT], 2021. %H A111152 Dave Rusin, <a href="http://www.math.niu.edu/~rusin/known-math/00_incoming/flt_rings">Seeking counterexamples to FLT in other rings</a> [Broken link] %H A111152 Dave Rusin, <a href="/A111152/a111152.txt">Seeking counterexamples to FLT in other rings</a> [Cached copy] %e A111152 a(3) = 6 = (17/21)^3 + (37/21)^3 %e A111152 a(4) = 5906 = (25/17)^4 + (149/17)^4 %e A111152 a(5) = 68101 = (15/2)^5 + (17/2)^5 %e A111152 a(6) <= 164634913 = (44/5)^6 + (117/5)^6 (_John W. Layman_, Oct 20 2005) %e A111152 a(7) <= 69071941639 = (63/2)^7 + (65/2)^7 %e A111152 From a posting to the Number Theory Mailing List by Seiji Tomita (fermat(AT)M15.ALPHA-NET.NE.JP), Sep 10 2009: (Start) %e A111152 a(8) <= (50429/17)^8 + (43975/17)^8 %e A111152 a(9) <= (257/2)^9 + (255/2)^9 %e A111152 a(10) <= (1199/5)^10 + (718/5)^10 %e A111152 a(11) <= (1025/2)^11 + (1023/2)^11 %e A111152 a(12) <= (9298423/17)^12 + (8189146/17)^12 %e A111152 a(13) <= (4097/2)^13 + (4095/2)^13 %e A111152 a(14) <= (76443/5)^14 + (16124/5)^14 %e A111152 a(15) <= (16385/2)^15 + (16383/2)^15 %e A111152 a(16) <= (3294416782861362/97)^16 + (2731979866522411/97)^16 %e A111152 a(17) <= (65537/2)^17 + (65535/2)^17 %e A111152 a(18) <= (1721764/5)^18 + (922077/5)^18 %e A111152 a(19) <= (262145/2)^19 + (262143/2)^19 %e A111152 a(20) <= (726388197629/17)^20 + (86503985645/17)^20 %e A111152 (End) %K A111152 nonn,more,hard %O A111152 3,1 %A A111152 _David W. Wilson_, Oct 19 2005