This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111178 #27 Oct 30 2021 18:00:43 %S A111178 1,0,0,1,0,0,1,0,1,1,0,1,1,0,1,2,1,1,2,1,1,2,1,2,4,1,2,4,1,2,5,2,4,5, %T A111178 2,5,5,2,6,7,4,6,7,5,6,8,6,8,12,6,9,13,6,10,15,8,14,15,9,16,16,10,18, %U A111178 21,14,19,22,16,20,24,19,25,30,20,27,33,21,29,39,26,37,40,28,42,42,31,48 %N A111178 Number of partitions of n into positive numbers one less than a square. %C A111178 Also limiting form of the number of representations of n into k positive squares for k decreasing from n to 1, or Table[Count[SumOfSquaresRepresentations[k,n], {a_,__}/;a>0], {n,100,100}, {k,100,40,-1}]. (_Franklin T. Adams-Watters_: replacing k^2 ones by the value k^2 changes the count by k^2-1). %C A111178 a(n) = A243148(2n,n). - _Alois P. Heinz_, May 30 2014 %H A111178 Alois P. Heinz, <a href="/A111178/b111178.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from T. D. Noe) %F A111178 G.f.: Product_{k>=2} 1/(1-x^(k^2-1)). %p A111178 b:= proc(n, i) option remember; %p A111178 `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)+ %p A111178 `if`(i^2>n+1, 0, b(n+1-i^2, i)))) %p A111178 end: %p A111178 a:= n-> b(n, isqrt(n)): %p A111178 seq(a(n), n=0..100); # _Alois P. Heinz_, May 30 2014 %t A111178 nn = 100; CoefficientList[Series[Product[1/(1 - x^(k^2 - 1)), {k, 2, nn}], {x, 0, nn}], x] (* corrected by _T. D. Noe_, Feb 22 2012 *) %t A111178 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i^2>n+1, 0, b[n+1-i^2, i]]]]; a[n_] := b[n, Round[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *) %o A111178 (Haskell) %o A111178 a111178 = p $ tail a005563_list where %o A111178 p _ 0 = 1 %o A111178 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A111178 -- _Reinhard Zumkeller_, Apr 02 2014 %Y A111178 Cf. A001156, A078134. %Y A111178 Cf. A005563, A319799. %K A111178 easy,nonn %O A111178 0,16 %A A111178 _Wouter Meeussen_, Oct 22 2005