This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111183 #18 Mar 19 2025 10:22:30 %S A111183 2,3,5,15,47,19,339,80,168,128,185,196,103,275,1771,1871,1028,498, %T A111183 3004,851,3641,1087,11845,1613,5402,2404,3182,2889,5225,4190,5461, %U A111183 10585,16958,1280,22444,9357,56241,30129,24857,19006,34461,15852,224417,15401 %N A111183 a(n) = prime(x) - pi(x) where x is the least x such that (prime(x+1) - pi(x+1)) - (prime(x) - pi(x)) = n. %C A111183 Conjecture: a(n) exists for every n. %H A111183 Robert Israel, <a href="/A111183/b111183.txt">Table of n, a(n) for n = 1..262</a> %p A111183 N:= 100: # for a(1) .. a(N) %p A111183 p:= 2: m:= 0: b:= 2:V:= Vector(N): count:= 0: %p A111183 for x from 2 while count < N do %p A111183 p:= nextprime(p); %p A111183 if isprime(x) then m:= m+1 fi; %p A111183 bp:= b; b:= p-m; %p A111183 v:= b-bp; %p A111183 if v >= 1 and v <= N and V[v] = 0 then V[v]:= bp; count:= count+1 fi %p A111183 od: %p A111183 convert(V,list); # _Robert Israel_, Mar 16 2025 %o A111183 (PARI) a(n) = { for(x=1, oo, my(y=prime(x)-primepi(x), z=prime(x+1)-primepi(x+1)); if(z-y == n,return(y)) ); } %Y A111183 Cf. A000040, A000720, A111181. %K A111183 nonn %O A111183 1,1 %A A111183 _Cino Hilliard_, Oct 22 2005