A111203 x such that pi(x)/li(x) is greater than it is for all smaller x > 1.5.
2, 1051, 1063, 1069, 1097, 1103, 1109, 1123, 1129, 1303, 1307, 1321, 1327, 1619, 1621, 1627, 2399, 2447, 2477, 2719, 2731, 2753, 2801, 2803, 3929, 3931, 3947, 4273, 4289, 4297, 5851, 5857, 5861, 5867, 5869, 5881, 6367, 6373, 6379, 9433, 9437, 9439
Offset: 1
Examples
For 1.5<x<2, li(x)>0 and pi(x)=0, so pi(x)/li(x)=0. a(1)=2 because at x=2, pi(x)/li(x) has its increase, to 1/li(2)=0.9567878442. a(2)=1051 because x=1051 gives the next time pi(x)/li(x) gives a higher value, 177/Li(1051)=0.956932676.
Programs
-
Maple
with(numtheory): Digits:=50; s:=0: for n from 1 to 10000 do if (evalf(n/Li(ithprime(n)))>s) then s:=evalf(n/Li(ithprime(n))): print(ithprime(n)) else s:=s end if end do;
Comments