A111231 Numbers which are perfect powers m^k equal to the sum of m distinct primes.
0, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4913, 5832, 6561, 6859, 7776, 8000, 8192, 9261, 10000, 10648, 12167, 13824, 14641, 15625, 16384, 16807
Offset: 1
Keywords
Examples
a(1) = 0 because 0 = 0^2 = 0^3 is the sum of 0 primes; a(2) = 8 because 8 = 2^3 = 3 + 5, sum of 2 primes; a(3) = 16 because 16 = 2^4 = 3 + 13, sum of 2 primes. a(4) = 27 because 27 = 3^3 = 3 + 11 + 13, sum of 3 primes.
Programs
-
PARI
is(n,d)={if(d=ispower(n), fordiv(d,e,e>1&&forvec(v=vector(d=sqrtnint(n,e)-1,i,[1,primepi((n-1)\2-d+3)]),prime(v[#v])<(d=n-vecsum(apply(i->prime(i),v)))&&isprime(d)&&return(1),2)), !n)} \\ M. F. Hasler, May 25 2018
Extensions
Offset corrected by R. J. Mathar, May 25 2009
Edited by M. F. Hasler, May 25 2018
Comments