A111240 Index at which n-th prime appears in A109890.
2, 3, 9, 23, 40, 22, 67, 49, 43, 48, 58, 89, 76, 151, 98, 24, 44, 59, 185, 100, 271, 122, 207, 178, 84, 217, 130, 31, 88, 145, 357, 119, 138, 309, 123, 47, 590, 150, 334, 684, 245, 39, 139, 81, 66, 70, 253, 642, 737, 227, 50, 144, 131, 422, 496, 479, 516, 389, 715
Offset: 1
Keywords
Examples
The 4th prime, 7, is A109890(23), so a(4) = 23.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1262
Programs
-
Maple
A109890 := proc(nmin) local a,i,k,apsum; a := [1] ; apsum := 1 ; while nops(a) < nmin do k := 1; while k in a or not ( apsum mod k = 0 or k mod apsum = 0 ) do k := k+1 ; od ; a := [op(a),k] ; apsum := apsum+k ; od; RETURN(a) ; end: A111240 := proc(nmin) local a,a109890,n,i; a := [] ; a109890 := A109890(nmin) ; n := 1; while member( ithprime(n),a109890,'i') do a := [op(a),i] ; n := n+1 ; od; RETURN(a) ; end: A111240(560) ; # R. J. Mathar, Aug 20 2007
-
Mathematica
nn = 1000; c[] := False; p[] := 0; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; r = 0; s = a[1] + a[2]; p[2] = 2; Monitor[Do[k = SelectFirst[Divisors[s], ! c[#] &]; c[k] = True; Map[(If[p[#] == 0, Set[p[#], n]]; If[# > r, r = #]) &, FactorInteger[k][[All, 1]]]; s += k, {n, 3, nn}], n]; s = 1; Reap[While[Set[k, p[Prime[s]]] > 0, Sow[k]; s++] ][[-1, 1]] (* Michael De Vlieger, Apr 26 2024 *)
Extensions
More terms from R. J. Mathar, Aug 20 2007
More terms from David Wasserman, Jan 07 2009