This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111279 #59 Aug 19 2022 11:58:48 %S A111279 1,1,2,6,21,79,309,1237,5026,20626,85242,354080,1476368,6173634, %T A111279 25873744,108628550,456710589,1922354351,8098984433,34147706833, %U A111279 144068881455,608151037123,2568318694867,10850577045131,45856273670841,193850277807569,819669810565949 %N A111279 Number of permutations avoiding the patterns {3241,3421,4321}; number of weak sorting class based on 3241. %C A111279 Is this the same sequence as A026737? - _Andrew S. Plewe_, May 09 2007 %C A111279 Yes, see the Callan reference "A bijection...". - _Joerg Arndt_, Feb 29 2016 %C A111279 a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>3, 1>4, 3>2} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the third element is larger than the second element. - _Sergey Kitaev_, Dec 10 2020 %H A111279 Alois P. Heinz, <a href="/A111279/b111279.txt">Table of n, a(n) for n = 0..1000</a> (terms n=1..300 from Vincenzo Librandi) %H A111279 M. Albert, R. Aldred, M. Atkinson, C. Handley, D. Holton, D. McCaughan and H. van Ditmarsch, <a href="https://doi.org/10.37236/1928">Sorting Classes</a>, Elec. J. of Comb. 12 (2005) R31. %H A111279 David Callan, <a href="http://arxiv.org/abs/1602.08347">A bijection for two sequences in OEIS</a>, arXiv:1602.08347 [math.CO], 2016. %H A111279 David Callan, and Toufik Mansour, <a href="http://arxiv.org/abs/1602.05182">Five subsets of permutations enumerated as weak sorting permutations</a>, arXiv:1602.05182 [math.CO], 2016. %H A111279 Alice L. L. Gao and Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019. %H A111279 Alice L. L. Gao, and Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26. %F A111279 O.g.f.: (3-13*x+2*x^2+(5*x-1)*sqrt(1-4*x))/(2*(1-4*x-x^2)). %F A111279 From _Gary W. Adamson_, Nov 14 2011: (Start) %F A111279 a(n) is the sum of top row terms of M^(n-1), M is an infinite square production matrix with powers of 2 as the left border as follows: %F A111279 1, 1, 0, 0, 0, ... %F A111279 2, 1, 1, 0, 0, ... %F A111279 4, 1, 1, 1, 0, ... %F A111279 8, 1, 1, 1, 1, ... %F A111279 ... (End) %F A111279 The top rows of these matrix powers, 1; 1,1; 3,2,1; 11,6,3,1; 43,21,10,4,1; appear also as columns in A026736. - _R. J. Mathar_, Nov 15 2011 %F A111279 D-finite with recurrence n*a(n) + (16-13*n)*a(n-1)+(55*n-134)*a(n-2) + (264-71*n)*a(n-3) + 10*(7-2*n)*a(n-4) = 0. - _R. J. Mathar_, Nov 15 2011 %F A111279 Shorter recurrence: n*(n+5)*a(n) = 2*(4*n^2 + 17*n - 30)*a(n-1) - 3*(5*n^2 + 17*n - 80)*a(n-2) - 2*(n+6)*(2*n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 18 2012 %F A111279 a(n) ~ (5/2-11/10*sqrt(5))*(sqrt(5)+2)^n. - _Vaclav Kotesovec_, Oct 18 2012 %e A111279 a(4) = 21 since the top row terms of M^3 = (11, 6, 3, 1, 0, 0, 0, ...) %t A111279 Rest[ CoefficientList[ Series[(3 - 13x + 2x^2 + (5x - 1)*Sqrt[1 - 4x])/(2*(1 - 4x - x^2)), {x, 0, 24}], x]] (* _Robert G. Wilson v_, Nov 04 2005 *) %K A111279 nonn %O A111279 0,3 %A A111279 _Len Smiley_, Nov 01 2005 %E A111279 More terms from _Robert G. Wilson v_, Nov 04 2005 %E A111279 a(0)=1 prepended by _Alois P. Heinz_, Dec 11 2020