This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111325 #11 May 14 2024 03:58:42 %S A111325 8,17,53,69,76,84,87,91,167,175,179,181,188,196,201,217,219,224,240, %T A111325 260,275,297,312,317,319,324,340,346,376,382,386,393,417,470,503,514, %U A111325 526,528,542,550,562,564,584,590,607,613,615,629,637,649,691,693,732,749,752,759 %N A111325 Numbers k such that 11 divides prime(1) + ... + prime(k). %H A111325 Michael S. Branicky, <a href="/A111325/b111325.txt">Table of n, a(n) for n = 1..10000</a> %t A111325 Position[Accumulate[Prime[Range[400]]], _?(Divisible[#, 11] &)] // Flatten (* _Amiram Eldar_, May 14 2024 *) %o A111325 (Python) %o A111325 from sympy import nextprime %o A111325 def aupto(limit): %o A111325 p, s, alst = 2, 2, [] %o A111325 for k in range(1, limit+1): %o A111325 if s == 0: alst.append(k) %o A111325 p = nextprime(p); s = (s + p)%11 %o A111325 return alst %o A111325 print(aupto(759)) # _Michael S. Branicky_, Aug 17 2021 %o A111325 (PARI) lista(pmax) = {my(s = 0, k = 0); forprime(p = 2, pmax, k++; s += p; if(!(s % 11), print1(k, ", ")));} \\ _Amiram Eldar_, May 14 2024 %Y A111325 Cf. A007504, A103208, A111318, A111319, A111320, A111321, A111322, A111323, A111324, A111326, A111327. %K A111325 nonn %O A111325 1,1 %A A111325 _N. J. A. Sloane_, Nov 05 2005