cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111330 Let qf(a,q) = Product_{j >= 0} (1-a*q^j); g.f. is qf(q,q^4)/qf(q^3,q^4).

This page as a plain text file.
%I A111330 #10 Nov 28 2020 19:58:08
%S A111330 1,-1,0,1,-1,-1,2,0,-2,1,1,-1,-1,1,2,-2,-2,3,1,-4,0,5,-1,-5,2,5,-4,-5,
%T A111330 6,4,-6,-4,7,4,-10,-2,12,0,-13,2,13,-4,-14,6,17,-10,-17,14,15,-17,-15,
%U A111330 21,15,-26,-13,31,9,-35,-5,39,2,-44,3,49,-12,-52,21,53,-27,-55,35,57,-47,-57,59,55,-69,-52,80,49,-95,-43,110,34,-122
%N A111330 Let qf(a,q) = Product_{j >= 0} (1-a*q^j); g.f. is qf(q,q^4)/qf(q^3,q^4).
%F A111330 From _Peter Bala_, Nov 28 2020: (Start)
%F A111330 O.g.f.: A(x) = F(x)/G(x) where F(x) = Product_{k >= 0} 1 - x^(4*k+1) (see A284313) and G(x) = Product_{k >= 0} 1 - x^(4*k+3) (see A284316).
%F A111330 Continued fraction representations: A(x) =  1 - x/(1 + x^2 - x^3/(1 + x^4 - x^5/(1 + x^6 - ... ))).
%F A111330 A(x) = 1 - x/(1 - x^2*(x - 1)/(1 - x^5/(1 - x^4*(x^3 - 1)/(1 - x^9/(1 - x^6*(x^5 - 1)/(1 - ... )))))). Cf. A224704. (End)
%Y A111330 Cf. A111317, A111335, A111374, A224704, A284313, A284316.
%K A111330 sign,easy
%O A111330 0,7
%A A111330 _N. J. A. Sloane_, Nov 09 2005