This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111336 #56 Jul 16 2022 01:37:02 %S A111336 1,1,1,2,2,3,2,4,2,3,2,4,2,3,2,4,2,3,2,4,2,3,2,4,2,3,2,3,2,3,2,4,2,3, %T A111336 2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,4,2,3,2,3, %U A111336 2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2 %N A111336 Number of convex regular polytopes with n hyperfaces (n>2) or n vertices. %C A111336 The minimum number of hyperfaces required for a convex polytope is 3, and the only convex polytope with 3 hyperfaces is a triangle. - _Jianing Song_, Sep 17 2018 %C A111336 From _Rajan Murthy_, Apr 08 2022: (Start) %C A111336 For n = 1,2,3 point(s) can only be arranged in (n-1)-dimensional simplices. a(1)=a(2)=a(3) = 1. For n = 1,2,3 the point(s) can only be arranged in (n-1)-dimensional simplices. a(1)=a(2)=a(3) = 1. %C A111336 For higher n, the figures based on n vertices are duals of the figures based on n hyperfaces. (End) %H A111336 Wikipedia, <a href="https://it.wikipedia.org/wiki/Lista_dei_politopi_regolari">Lista dei politopi regolari</a>. %H A111336 Wikipedia, <a href="http://en.wikipedia.org/wiki/List_of_regular_polytopes">Regular Polytopes</a>. %F A111336 a(3) = 1; a(n) = 2 if n = 4 or n is odd and >= 5; a(n) = 4 if n = 12, 20, 24, 120, 600 or a power of 2 >= 8; a(n) = 3 otherwise. - _Jianing Song_, Sep 17 2018 %e A111336 a(8) = 4 because the regular polytopes with 8 faces are the octagon, the octahedron, the four-dimensional cube and the 7-dimensional simplex. %e A111336 From _Rajan Murthy_, Apr 08 2022: (Start) %e A111336 For n = 8, points may be arranged in an octagon, a cube, a 4-dimensional orthoplex, or a 7-dimensional simplex, so a(8) = 4. %e A111336 For n = 12, there are a(12) = 4 regular polytopes with 12 hyperfaces. They, and their duals with 12 points, are: %e A111336 12 hyperfaces 12 points %e A111336 dodecagon dodecagon %e A111336 dodecahedron icosahedron %e A111336 6-cube 6-D orthoplex %e A111336 11-D simplex 11-D simplex %e A111336 (End) %o A111336 (PARI) %o A111336 a(n)={ %o A111336 if(n<=3, return(1)); %o A111336 if(n==4||(n>=5&&n%2==1), return(2)); %o A111336 if(n>=6&&n%2==0, return(3+(n==12||n==20||n==24||n==120||n==600||(n>=8&&omega(2*n)==1)))); %o A111336 else(return(0)); %o A111336 } \\ _Jianing Song_, Sep 17 2018 %Y A111336 Cf. A302139 (indices of 4). %K A111336 nonn,easy %O A111336 1,4 %A A111336 Paulo de A. Sachs (sachs6(AT)yahoo.de), Nov 09 2005 %E A111336 Terms beyond a(38) from _Jianing Song_, Sep 17 2018 %E A111336 a(1) and a(2) prepended and definition extended by _Rajan Murthy_, Apr 08 2022