This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111357 #11 Apr 01 2020 16:49:35 %S A111357 1,0,1,1,3,4,12,23,73,191,649,2054,7209,24963,89376,320133,1160752, %T A111357 4218225,15414908,56474453,207586410,764855802,2825168619,10458049611, %U A111357 38795658003,144203518881,537031911877,2003618333624,7488436558647 %N A111357 Numbers of planar triangulations with minimum degree 5 and without separating 3-cycles - that is 3-cycles where the interior and exterior contain at least one vertex. %H A111357 G. Brinkmann, <a href="http://www.mathematik.uni-bielefeld.de/~CaGe/">CaGe</a>. %H A111357 Gunnar Brinkmann and Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/plantri/">plantri and fullgen</a> programs for generation of certain types of planar graph. %H A111357 Gunnar Brinkmann and Brendan McKay, <a href="/A000103/a000103_1.pdf">plantri and fullgen</a> programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission] %H A111357 G. Brinkmann and Brendan D. McKay, <a href="http://dx.doi.org/10.1016/j.disc.2005.06.019">Construction of planar triangulations with minimum degree 5 </a>, Disc. Math. vol 301, iss. 2-3 (2005) 147-163. %e A111357 The icosahedron is the smallest triangulation with minimum degree 5 and it doesn't contain any separating triangles. Examples can easily be seen as 2D and 3D pictures using the program CaGe cited above. %Y A111357 Cf. A081621, A007894. %K A111357 nonn %O A111357 12,5 %A A111357 _Gunnar Brinkmann_, Nov 07 2005