This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111373 #29 Dec 12 2024 10:55:23 %S A111373 1,0,1,0,0,1,1,0,0,1,0,2,0,0,1,0,0,3,0,0,1,3,0,0,4,0,0,1,0,7,0,0,5,0, %T A111373 0,1,0,0,12,0,0,6,0,0,1,12,0,0,18,0,0,7,0,0,1,0,30,0,0,25,0,0,8,0,0,1, %U A111373 0,0,55,0,0,33,0,0,9,0,0,1,55,0,0,88,0,0,42,0,0,10,0,0,1,0,143,0,0,130,0,0,52,0,0,11,0,0,1 %N A111373 A generalized Pascal triangle. %C A111373 First diagonal is A000012, the all 1's sequence. Second nonzero diagonal is A000027 = n. Third nonzero diagonal is A027379 = n*(n+5)/2 for n>=1, or essentially A000217(n) - 3. Fourth nonzero diagonal is A111396. - _Jonathan Vos Post_, Nov 10 2005 %C A111373 Row sums are A126042. - _Paul Barry_, Dec 16 2006 %H A111373 G. C. Greubel, <a href="/A111373/b111373.txt">Rows n = 0..50 of the triangle, flattened</a> %H A111373 I. Bajunaid et al., <a href="http://www.jstor.org/stable/30037599">Function series, Catalan numbers and random walks on trees</a>, Amer. Math. Monthly 112 (2005), 765-785. %H A111373 Paul Barry, <a href="https://arxiv.org/abs/2412.05461">The Triple Riordan Group</a>, arXiv:2412.05461 [math.CO], 2024. See pp. 7, 10. %H A111373 Emeric Deutsch, L. Ferrari and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Mathematics, 34 (2005) pp. 101-122. %F A111373 Each term is the sum of the two terms above it to the left and two steps to the right. %F A111373 From _Paul Barry_, Dec 16 2006: (Start) %F A111373 Riordan array (g(x^3),x*g(x^3)) where g(x)=(2/sqrt(3x))*sin(asin(sqrt(27x/4))/3), the g.f. of A001764; %F A111373 Number triangle T(n,k) = C(3*floor((n+2k)/3)-2k,floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3)-k+ 1)(2*cos(2*pi*(n-k)/3)+1)/3. (End) %F A111373 Inverse of Riordan array (1/(1+x^3), x/(1+x^3)), A126030. - _Paul Barry_, Dec 16 2006 %F A111373 G.f. (x*A(x))^k=sum{n>=k, T(n,k)*x^n}, where A(x)=1+x^3*A(x)^3. - Vladimir Kruchinin, Feb 18 2011 %F A111373 From _G. C. Greubel_, Jul 30 2022: (Start) %F A111373 T(n, k) = (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1) for ( (n-k) mod 3 ) = 0, otherwise 0, with T(n, n) = 1. %F A111373 T(n, n-3) = A000027(n-2), n >= 3. %F A111373 T(n, n-6) = A027379(n-5), n >= 6. %F A111373 T(n, n-9) = A111396(n-8), n >= 9. %F A111373 T(n, n-12) = A167543(n+5), n >= 12. %F A111373 Sum_{k=0..n} T(n, k) = A126042(n). (End) %e A111373 Triangle begins: %e A111373 1; %e A111373 0, 1; %e A111373 0, 0, 1; %e A111373 1, 0, 0, 1; %e A111373 0, 2, 0, 0, 1; %e A111373 0, 0, 3, 0, 0, 1; %e A111373 3, 0, 0, 4, 0, 0, 1; %e A111373 0, 7, 0, 0, 5, 0, 0, 1; %e A111373 0, 0, 12, 0, 0, 6, 0, 0, 1; %e A111373 12, 0, 0, 18, 0, 0, 7, 0, 0, 1; %e A111373 0, 30, 0, 0, 25, 0, 0, 8, 0, 0, 1; %e A111373 0, 0, 55, 0, 0, 33, 0, 0, 9, 0, 0, 1; %e A111373 55, 0, 0, 88, 0, 0, 42, 0, 0, 10, 0, 0, 1; %e A111373 Production matrix is %e A111373 0, 1; %e A111373 0, 0, 1; %e A111373 1, 0, 0, 1; %e A111373 0, 1, 0, 0, 1; %e A111373 0, 0, 1, 0, 0, 1; %e A111373 0, 0, 0, 1, 0, 0, 1; %e A111373 0, 0, 0, 0, 1, 0, 0, 1; %e A111373 0, 0, 0, 0, 0, 1, 0, 0, 1; %e A111373 0, 0, 0, 0, 0, 0, 1, 0, 0, 1; %t A111373 T[n_, k_]= If[k==n, 1, If[Mod[n-k, 3]==0, (3/(n-k))*Binomial[n, (n-k)/3 -1]*(k + 1), 0]]; %t A111373 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 30 2022 *) %o A111373 (Magma) %o A111373 function A111373(n,k) %o A111373 if k eq n then return 1; %o A111373 elif ((n-k) mod 3) eq 0 then return (3/(n-k))*Binomial(n, Floor((n-k-3)/3))*(k+1); %o A111373 else return 0; %o A111373 end if; return A111373; %o A111373 end function; %o A111373 [A111373(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jul 30 2022 %o A111373 (SageMath) %o A111373 def A111373(n,k): %o A111373 if(k==n): return 1 %o A111373 elif ((n-k)%3==0): return (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1) %o A111373 else: return 0 %o A111373 flatten([[A111373(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Jul 30 2022 %Y A111373 First column is A001764. Bears same relation to A001764 as A053121 does to A000108. %Y A111373 Cf. A000012, A000027, A027379, A111396, A126042 (row sums), A167543. %K A111373 nonn,easy,tabl %O A111373 0,12 %A A111373 _N. J. A. Sloane_, Nov 09 2005 %E A111373 More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Jan 23 2006