This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111383 #12 Jan 03 2025 11:47:48 %S A111383 3,7,3,3,79,701,157,1103,11959,1901,10273,92753,17047,11909,144973, %T A111383 327251,99289,92831,90373,309671,1149619,745397,1232083,94793,18481, %U A111383 76607,186649,181421,1657561,3746111,7067239,324143,3185263,9457181,1703413,3517583,72481,12859481 %N A111383 Beginning with 3, least member of A007500 such that concatenation of first n terms and its digit reversal both are primes. %H A111383 Michael S. Branicky, <a href="/A111383/b111383.txt">Table of n, a(n) for n = 1..164</a> %o A111383 (Python) %o A111383 from gmpy2 import digits, is_prime, mpz %o A111383 from itertools import count, islice, product %o A111383 def bgen(): # generator of terms of A007500 -{2, 5} as strings %o A111383 yield from "37" %o A111383 p = 11 %o A111383 for digits in count(2): %o A111383 for first in "1379": %o A111383 for mid in product("0123456789", repeat=digits-2): %o A111383 for last in "1379": %o A111383 s = first + "".join(mid) + last %o A111383 if is_prime(mpz(s)) and is_prime(mpz(s[::-1])): %o A111383 yield s %o A111383 def agen(): # generator of terms %o A111383 s, r, an, san = "", "", 3, "3" %o A111383 while True: %o A111383 yield int(an) %o A111383 s, r = s+san, san[::-1]+r %o A111383 for san in bgen(): %o A111383 if is_prime(mpz(s+san)) and is_prime(mpz(san[::-1]+r)): %o A111383 break %o A111383 an = mpz(san) %o A111383 print(list(islice(agen(), 34))) # _Michael S. Branicky_, Jan 02 2025 %Y A111383 Cf. A113584, A111382, A007500. %K A111383 nonn,base %O A111383 1,1 %A A111383 _Hans Havermann_, Nov 08 2005 %E A111383 a(35) and beyond from _Michael S. Branicky_, Jan 02 2025