cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111451 Number of partitions of P where P=(5*n + 1) if n is even and P=((5*n + 1)/2) if n is odd.

This page as a plain text file.
%I A111451 #11 Dec 18 2017 03:07:01
%S A111451 1,3,56,22,792,101,6842,385,44583,1255,239943,3718,1121505,10143,
%T A111451 4697205,26015,18004327,63261,64112359,147273,214481126,329931,
%U A111451 679903203,715220,2056148051,1505499,5964539504,3087735,16670689208
%N A111451 Number of partitions of P where P=(5*n + 1) if n is even and P=((5*n + 1)/2) if n is odd.
%e A111451 If n=12 then P(5*n + 1) = 1121505.
%t A111451 Table[ PartitionsP@If[EvenQ[n], 5n + 1, (5n + 1)/2], {n, 0, 30}] (* _Robert G. Wilson v_, Nov 15 2005 *)
%o A111451 (MuPAD) for n from 1 to 20 do if n/2 = trunc(n/2) then a := 5*n+1; end_if; if n/2 <> trunc(n/2) then a := (5*n+1)/2; end_if; print(combinat::partitions::count(a)); end_for; // _Stefan Steinerberger_, Nov 15 2005
%Y A111451 Cf. A111329.
%K A111451 nonn
%O A111451 0,2
%A A111451 _Parthasarathy Nambi_, Nov 14 2005
%E A111451 More terms from _Robert G. Wilson v_ and _Stefan Steinerberger_, Nov 15 2005