This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111524 #15 Oct 13 2021 08:39:18 %S A111524 10,13,23,49,111,113,171,211,293,309,309,469,639,759,951,1037,1057, %T A111524 1083,1257,1269,1287,1341,1551,1637,1677,1981,1989,2021,2059,2357, %U A111524 2583,2697,2967,3289,6789,7073,7323,7369,7463,7501,7709,7869,8029,8069,8077,8519 %N A111524 a(1) = 10; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime. %H A111524 Michael S. Branicky, <a href="/A111524/b111524.txt">Table of n, a(n) for n = 1..449</a> %t A111524 a[1] = 10; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 46}] (* _Robert G. Wilson v_, Aug 05 2005 *) %o A111524 (Python) %o A111524 from sympy import isprime %o A111524 def aupton(terms): %o A111524 alst, astr = [10], "10" %o A111524 while len(alst) < terms: %o A111524 k = alst[-1] + (1 - alst[-1]%2) %o A111524 while not isprime(int(astr+str(k))): k += 2 %o A111524 alst.append(k) %o A111524 astr += str(k) %o A111524 return alst %o A111524 print(aupton(46)) # _Michael S. Branicky_, Oct 13 2021 %Y A111524 Cf. A111525, A074346, A033680, A033679, A033681. %Y A111524 Cf. A046254, A046255, A046256, A046257, A046258, A046259. %K A111524 base,nonn %O A111524 1,1 %A A111524 _Patrick De Geest_, _Zak Seidov_ and _Robert G. Wilson v_, Aug 05 2005