cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111579 Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.

This page as a plain text file.
%I A111579 #10 Aug 01 2023 07:39:43
%S A111579 1,1,1,1,2,1,1,4,2,1,1,8,5,2,1,1,16,15,6,2,1,1,32,52,24,7,2,1,1,64,
%T A111579 203,116,35,8,2,1,1,128,877,648,214,48,9,2,1,1,256,4140,4088,1523,352,
%U A111579 63,10,2,1,1,512,21147,28640,12349,3008,536,80,11,2,1
%N A111579 Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.
%C A111579 Triangles of generalized Stirling numbers of the second kind may be defined by recurrences T(n,k) = T(n-1,k-1) + Q*T(n-1,k) initialized by T(0,0)=T(1,0)=T(1,1)=1. Q=1 generates Pascal's triangle A007318,
%C A111579 Q=k+1 generates A008277, Q=2k+1 generates A039755, Q=3k+1 generates A111577, Q=4k+1 generates A111578, Q=5k+1 generates A166973.
%C A111579 (These definitions assume row and column enumeration 0<=n, 0<=k<=n.)
%C A111579 Each of these triangles characterized by Q=(c-1)*k+1 has row sums sum_{k=0..n} T(n,k), which define the column A(.,c).
%F A111579 A(r=n+c,c) = sum_{k=0..n} T(n,k,c), 0<=c<=r where T(n,k,c) = T(n-1,k-1,c) + ((c-1)*k+1)*T(n-1,k,c).
%F A111579 A(r,0) = 1.
%F A111579 A(r,1) = 2^(r-1).
%F A111579 A(r,2) = A000110(r-1).
%F A111579 A(r,3) = A007405(r-3).
%p A111579 T := proc(n,k,c) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1,c)+((c-1)*k+1)*procname(n-1,k,c) ; fi; end:
%p A111579 A111579 := proc(r,c) local n; if c = 0 then 1 ; else n := r-c ; add( T(n,k,c),k=0..n) ; end if; end:
%p A111579 seq(seq(A111579(r,c),c=0..r),r=0..10) ; # _R. J. Mathar_, Oct 30 2009
%t A111579 T[n_, k_, c_] := T[n, k, c] = If[k < 0 || k > n, 0, If[n <= 1, 1, T[n-1, k-1, c] + ((c-1)*k+1)*T[n-1, k, c]]];
%t A111579 A111579[r_, c_] := Module[{n}, If[c == 0, 1, n = r - c; Sum[T[n, k, c], {k, 0, n}]]];
%t A111579 Table[A111579[r, c], {r, 0, 10}, {c, 0, r}] // Flatten (* _Jean-François Alcover_, Aug 01 2023, after _R. J. Mathar_ *)
%Y A111579 Cf. A008277, A000110, A039755, A004211, A111577, A111578.
%K A111579 nonn,tabl
%O A111579 0,5
%A A111579 _Gary W. Adamson_, Aug 07 2005
%E A111579 Edited by _R. J. Mathar_, Oct 30 2009