A111594 Triangle of arctanh numbers.
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 24, 0, 20, 0, 1, 0, 0, 184, 0, 40, 0, 1, 0, 720, 0, 784, 0, 70, 0, 1, 0, 0, 8448, 0, 2464, 0, 112, 0, 1, 0, 40320, 0, 52352, 0, 6384, 0, 168, 0, 1, 0, 0, 648576, 0, 229760, 0, 14448, 0, 240, 0, 1
Offset: 0
Examples
Binomial convolution of row polynomials: p(3,x)= 2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1, together with those from A060524: s(3,x)= 5*x+x^3; s(2,x)= 1+x^2, s(1,x)= x, s(0,x)= 1; therefore: 5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = 2*y+y^3 + 3*x*y^2 + 3*(1+x^2)*y + (5*x+x^3). Triangle begins: 1; 0, 1; 0, 0, 1; 0, 2, 0, 1; 0, 0, 8, 0, 1; 0, 24, 0, 20, 0, 1; 0, 0, 184, 0, 40, 0, 1; 0, 720, 0, 784, 0, 70, 0, 1; 0, 0, 8448, 0, 2464, 0, 112, 0, 1; ...
Links
- Wolfdieter Lang, First 10 rows.
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n::even, n!, 0), 10); # Peter Luschny, Jan 27 2016
-
Mathematica
rows = 10; t = Table[If[EvenQ[n], n!, 0], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
Sage
# uses[riordan_array from A256893] riordan_array(1, atanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015
Formula
E.g.f. for column m>=0: ((arctanh(x))^m)/m!.
a(n, m) = coefficient of x^n of ((arctanh(x))^m)/m!, n>=m>=0, else 0.
a(n, m) = a(n-1, m-1) + (n-2)*(n-1)*a(n-2, m), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n
Comments