This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111600 #14 May 02 2022 02:59:30 %S A111600 1,110,7260,377520,17177160,721440720,28857628800,1121325004800, %T A111600 42890681433600,1629845894476800,61934143990118400, %U A111600 2364758225077248000,91043191665474048000,3543681152517682176000,139722285442125754368000 %N A111600 Lah numbers: a(n) = n!*binomial(n-1,9)/10!. %D A111600 Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156. %D A111600 John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44. %F A111600 E.g.f.: ((x/(1-x))^10)/10!. %F A111600 a(n) = (n!/10!)*binomial(n-1, 10-1). %F A111600 If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i)*x^(k-j) then a(n) = (-1)^n*f(n,10,-10), (n>=10). - _Milan Janjic_, Mar 01 2009 %F A111600 From _Amiram Eldar_, May 02 2022: (Start) %F A111600 Sum_{n>=10} 1/a(n) = 5086710*(gamma - Ei(1)) + 50940*e + 91914449/14, where gamma = A001620, Ei(1) = A091725 and e = A001113. %F A111600 Sum_{n>=10} (-1)^n/a(n) = 413689770*(gamma - Ei(-1)) - 246749400/e - 3342795017/14, where Ei(-1) = -A099285. (End) %t A111600 Table[n! * Binomial[n - 1, 9]/10!, {n, 10, 25}] (* _Amiram Eldar_, May 02 2022 *) %Y A111600 Column 10 of unsigned A008297 and A111596. %Y A111600 Column 9: A111599. %Y A111600 Cf. A001113, A001620, A091725, A099285. %K A111600 nonn,easy %O A111600 10,2 %A A111600 _Wolfdieter Lang_, Aug 23 2005