cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111603 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from upper right to lower left.

This page as a plain text file.
%I A111603 #5 Mar 30 2012 18:36:50
%S A111603 1,1,1,1,2,1,1,1,3,1,1,2,3,4,1,1,2,1,2,5,1,1,2,3,4,5,6,1,1,1,3,3,5,3,
%T A111603 7,1,1,2,3,4,5,2,7,8,1,1,2,3,4,1,3,7,4,9,1,1,2,3,4,5,6,7,8,9,10,1,1,1,
%U A111603 3,1,5,6,7,2,3,5,11,1,1,2,3,4,5,6,7,8,9,10,11,12,1,1,1,3,4,5,3,1,4,9,10
%N A111603 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from upper right to lower left.
%e A111603 Table begins
%e A111603 k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13
%e A111603 n\
%e A111603 1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
%e A111603 2| 1 2 1 2 2 2 1 2 2 2 1 2 1 2
%e A111603 3| 1 3 3 1 3 3 3 3 3 3 3 3 1 3
%e A111603 4| 1 4 2 4 3 4 4 4 1 4 4 4 3 4
%e A111603 5| 1 5 5 5 5 1 5 5 5 5 4 5 5 5
%e A111603 6| 1 6 3 2 3 6 6 6 3 4 6 6 6 6
%e A111603 7| 1 7 7 7 7 7 7 1 7 7 7 7 7 7
%e A111603 8| 1 8 4 8 2 8 4 8 7 8 8 8 4 8
%e A111603 9| 1 9 9 3 9 9 3 9 9 1 9 9 6 9
%e A111603 10| 1 10 5 10 10 2 5 10 10 10 3 10 5 10
%e A111603 11| 1 11 11 11 11 11 11 11 11 11 11 1 11 11
%e A111603 12| 1 12 6 4 9 12 4 12 12 8 6 12 6 12
%e A111603 13| 1 13 13 13 13 13 13 13 13 13 13 13 13 1
%e A111603 14| 1 14 7 14 7 14 14 2 7 14 14 14 14 14
%e A111603 15| 1 15 15 5 15 3 10 15 15 10 15 15 5 15
%e A111603 16| 1 16 8 16 4 16 8 16 10 16 8 16 12 16
%t A111603 f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[ a[j], {j, 0, 32}]]; g[n_, m_] := f[n][[m]]; Flatten[ Table[ f[i, n - i], {n, 15}, {i, n - 1, 1, -1}]]
%Y A111603 Cf. A111613, A083952, A083953, A083954, A083945, A083946, A083947, A083948, A083949, A083950, A084066, A084067.
%Y A111603 Cf. A109626, A111604.
%K A111603 nonn,tabl
%O A111603 1,5
%A A111603 _Paul D. Hanna_ and _Robert G. Wilson v_, Aug 01 2005