This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111670 #24 Jul 23 2024 03:47:07 %S A111670 1,1,1,1,2,1,1,3,6,1,1,4,15,24,1,1,5,28,105,116,1,1,6,45,280,929,648, %T A111670 1,1,7,66,585,3600,9851,4088,1,1,8,91,1056,9865,56240,121071,28640,1 %N A111670 Array T(n,k) read by antidiagonals: the k-th column contains the first column of the k-th power of A039755. %F A111670 Let A039755 (an analog of Stirling numbers of the second kind) be an infinite lower triangular matrix M; then the vector M^k * [1, 0, 0, 0, ...] (first column of the k-th power) is the k-th column of this array. %e A111670 1 1 1 1 1 1 1 1 %e A111670 1 2 3 4 5 6 7 8 %e A111670 1 6 15 28 45 66 91 120 %e A111670 1 24 105 280 585 1056 1729 2640 %e A111670 1 116 929 3600 9865 22036 43001 76224 %e A111670 1 648 9851 56240 203565 565096 1318023 2717856 %e A111670 1 4088 121071 1029920 4953205 17148936 47920803 115146816 %e A111670 1 28640 1685585 21569600 138529105 600001696 2012844225 5644055040 %p A111670 A111670 := proc(n,k) %p A111670 local A,i,j ; %p A111670 A := Matrix(n,n) ; %p A111670 for i from 1 to n do %p A111670 for j from 1 to n do %p A111670 A[i,j] := A039755(i-1,j-1) ; %p A111670 end do: %p A111670 end do: %p A111670 LinearAlgebra[MatrixPower](A,k) ; %p A111670 %[n,1] ; %p A111670 end proc: %p A111670 for d from 2 to 12 do %p A111670 for n from 1 to d-1 do %p A111670 printf("%d,",A111670(n,d-n)) ; %p A111670 end do: %p A111670 end do: # _R. J. Mathar_, Jan 27 2023 %t A111670 nmax = 10; %t A111670 A[n_, k_] := Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!); %t A111670 A039755 = Array[A, {nmax, nmax}, {0, 0}]; %t A111670 T = Table[MatrixPower[A039755, n][[All, 1]], {n, 1, nmax}] // Transpose; %t A111670 Table[T[[n-k+1, k]], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Apr 02 2024 *) %Y A111670 Cf. A039755, A007405 (column 2), A000384 (row 2), A011199 (row 3). %K A111670 nonn,tabl %O A111670 1,5 %A A111670 _Gary W. Adamson_, Aug 14 2005 %E A111670 Definition simplified by _R. J. Mathar_, Jan 27 2023