This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111710 #27 Feb 09 2024 08:40:57 %S A111710 1,4,7,13,18,27,34,46,55,70,81,99,112,133,148,172,189,216,235,265,286, %T A111710 319,342,378,403,442,469,511,540,585,616,664,697,748,783,837,874,931, %U A111710 970,1030,1071,1134,1177,1243,1288,1357,1404,1476,1525,1600,1651,1729 %N A111710 Consider the triangle shown below in which the n-th row contains the n smallest numbers greater than those in the previous row such that the arithmetic mean is an integer. Sequence contains the leading diagonal. %H A111710 Colin Barker, <a href="/A111710/b111710.txt">Table of n, a(n) for n = 1..1000</a> %H A111710 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A111710 a(1)=1, a(2n) = a(2n-1)+3n, a(2n+1)=a(2n)+2n+1. - _Franklin T. Adams-Watters_, May 01 2006 %F A111710 G.f.: -x*(1+3*x+x^2) / ( (1+x)^2*(x-1)^3 ). a(n+1)-a(n) = A080512(n+1). - _R. J. Mathar_, May 02 2013 %F A111710 From _Colin Barker_, Jan 26 2016: (Start) %F A111710 a(n) = (10*n^2+2*(-1)^n*n+10*n+(-1)^n-1)/16. %F A111710 a(n) = (5*n^2+6*n)/8 for n even. %F A111710 a(n) = (5*n^2+4*n-1)/8 for n odd. (End) %e A111710 The fourth row is 8,9,10 and 13,(8+9+10 +13)/4 = 10. %e A111710 Triangle begins: %e A111710 1 %e A111710 2 4 %e A111710 5 6 7 %e A111710 8 9 10 13 %e A111710 14 15 16 17 18 %e A111710 19 20 21 22 23 27 %e A111710 28 29 30 31 32 33 34 %t A111710 LinearRecurrence[{1, 2, -2, -1, 1}, {1, 4, 7, 13, 18}, 100] (* _Paolo Xausa_, Feb 09 2024 *) %o A111710 (PARI) Vec(x*(1+3*x+x^2)/((1-x)^3*(1+x)^2) + O(x^100)) \\ _Colin Barker_, Jan 26 2016 %Y A111710 Cf. A111711, A111712. %Y A111710 Cf. A085787. - _R. J. Mathar_, Aug 15 2008 %K A111710 easy,nonn %O A111710 1,2 %A A111710 _Amarnath Murthy_, Aug 24 2005 %E A111710 More terms from _Franklin T. Adams-Watters_, May 01 2006