cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111800 Order of the rote (rooted odd tree with only exponent symmetries) for n.

This page as a plain text file.
%I A111800 #17 Sep 02 2025 23:31:34
%S A111800 1,3,5,5,7,7,7,7,7,9,9,9,9,9,11,7,9,9,9,11,11,11,9,11,9,11,9,11,11,13,
%T A111800 11,9,13,11,13,11,11,11,13,13,11,13,11,13,13,11,13,11,9,11,13,13,9,11,
%U A111800 15,13,13,13,11,15,11,13,13,9,15,15,11,13,13,15,13,13,13,13,13,13,15,15
%N A111800 Order of the rote (rooted odd tree with only exponent symmetries) for n.
%C A111800 A061396(n) gives the number of times that 2n+1 appears in this sequence.
%H A111800 Alois P. Heinz, <a href="/A111800/b111800.txt">Table of n, a(n) for n = 1..10000</a>
%H A111800 J. Awbrey, <a href="/A061396/a061396a.txt">Illustrations of Rotes for Small Integers</a>
%H A111800 J. Awbrey, <a href="https://oeis.org/wiki/Riffs_and_Rotes">Riffs and Rotes</a>
%F A111800 a(Prod(p_i^e_i)) = 1 + Sum(a(i) + a(e_i)), product over nonzero e_i in prime factorization of n.
%e A111800 Writing prime(i)^j as i:j and using equal signs between identified nodes:
%e A111800 2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote:
%e A111800   ` ` ` ` ` ` ` `
%e A111800   ` ` ` o-o ` o-o
%e A111800   ` ` ` | ` ` | `
%e A111800   ` o-o o-o o-o `
%e A111800   ` | ` | ` | ` `
%e A111800   o-o ` o---o ` `
%e A111800   | ` ` | ` ` ` `
%e A111800   O=====O ` ` ` `
%e A111800   ` ` ` ` ` ` ` `
%e A111800 So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15.
%p A111800 with(numtheory):
%p A111800 a:= proc(n) option remember;
%p A111800       1+add(a(pi(i[1]))+a(i[2]), i=ifactors(n)[2])
%p A111800     end:
%p A111800 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 25 2015
%t A111800 a[1] = 1; a[n_] := a[n] = 1+Sum[a[PrimePi[i[[1]] ] ] + a[i[[2]] ], {i, FactorInteger[n]}]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 11 2015, after _Alois P. Heinz_ *)
%Y A111800 Cf. A061396, A062504, A062537, A062860, A106177, A109300, A109301.
%K A111800 nonn,changed
%O A111800 1,2
%A A111800 _Jon Awbrey_, Aug 17 2005, based on calculations by _David W. Wilson_