cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111808 Left half of trinomial triangle (A027907), triangle read by rows.

This page as a plain text file.
%I A111808 #27 Feb 16 2025 08:32:58
%S A111808 1,1,1,1,2,3,1,3,6,7,1,4,10,16,19,1,5,15,30,45,51,1,6,21,50,90,126,
%T A111808 141,1,7,28,77,161,266,357,393,1,8,36,112,266,504,784,1016,1107,1,9,
%U A111808 45,156,414,882,1554,2304,2907,3139,1,10,55,210,615,1452,2850,4740,6765,8350
%N A111808 Left half of trinomial triangle (A027907), triangle read by rows.
%C A111808 Consider a doubly infinite chessboard with squares labeled (n,k), ranks or rows n in Z, files or columns k in Z (Z denotes ...,-2,-1,0,1,2,... ); number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - _Harrie Grondijs_, May 27 2005. Cf. A026300, A114929, A114972.
%C A111808 Triangle of numbers C^(2)(n-1,k), n>=1, of combinations with repetitions from elements {1,2,...,n} over k, such that every element i, i=1,...,n, appears in a k-combination either 0 or 1 or 2 times (cf. also A213742-A213745). - _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 19 2012
%D A111808 Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
%H A111808 G. C. Greubel, <a href="/A111808/b111808.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A111808 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TrinomialTriangle.html">Trinomial Triangle</a>
%H A111808 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TrinomialCoefficient.html">Trinomial Coefficient</a>
%F A111808 (1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k<n);
%F A111808 T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
%F A111808 T(n, k) = GegenbauerC(k, -n, -1/2). - _Peter Luschny_, May 09 2016
%p A111808 T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)):
%p A111808 for n from 0 to 9 do seq(T(n,k), k=0..n) od; # _Peter Luschny_, May 09 2016
%t A111808 Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* _G. C. Greubel_, Feb 28 2017 *)
%Y A111808 Row sums give A027914; central terms give A027908;
%Y A111808 T(n, 0) = 0;
%Y A111808 T(n, 1) = n for n>1;
%Y A111808 T(n, 2) = A000217(n) for n>1;
%Y A111808 T(n, 3) = A005581(n) for n>2;
%Y A111808 T(n, 4) = A005712(n) for n>3;
%Y A111808 T(n, 5) = A000574(n) for n>4;
%Y A111808 T(n, 6) = A005714(n) for n>5;
%Y A111808 T(n, 7) = A005715(n) for n>6;
%Y A111808 T(n, 8) = A005716(n) for n>7;
%Y A111808 T(n, 9) = A064054(n-5) for n>8;
%Y A111808 T(n, n-5) = A098470(n) for n>4;
%Y A111808 T(n, n-4) = A014533(n-3) for n>3;
%Y A111808 T(n, n-3) = A014532(n-2) for n>2;
%Y A111808 T(n, n-2) = A014531(n-1) for n>1;
%Y A111808 T(n, n-1) = A005717(n) for n>0;
%Y A111808 T(n, n) = central terms of A027907 = A002426(n).
%K A111808 nonn,tabl
%O A111808 1,5
%A A111808 _Reinhard Zumkeller_, Aug 17 2005
%E A111808 Corrected and edited by _Johannes W. Meijer_, Oct 05 2010