cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111817 Number of partitions of 3*4^n into powers of 4, also equals column 1 of triangle A078536, which shifts columns left and up under matrix 4th power.

This page as a plain text file.
%I A111817 #11 Jun 13 2017 22:34:25
%S A111817 1,4,28,524,29804,5423660,3276048300,6744720496300,48290009081437356,
%T A111817 1221415413140406958252,110523986015743458745929900,
%U A111817 36150734459755630877180158951596
%N A111817 Number of partitions of 3*4^n into powers of 4, also equals column 1 of triangle A078536, which shifts columns left and up under matrix 4th power.
%C A111817 Let q=4; a(n) equals the partitions of (q-1)*q^n into powers of q, or, the coefficient of x^((q-1)*q^n) in 1/Product_{j>=0}(1-x^(q^j)).
%H A111817 Alois P. Heinz, <a href="/A111817/b111817.txt">Table of n, a(n) for n = 0..40</a>
%F A111817 a(n) = [x^(3*4^n)] 1/Product_{j>=0}(1-x^(4^j)).
%o A111817 (PARI) a(n,q=4)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
%Y A111817 Cf. A078536 (triangle), A002577 (q=2), A078124 (q=3), A111821 (q=5), A111826 (q=6), A111831 (q=7), A111836 (q=8).
%K A111817 nonn
%O A111817 0,2
%A A111817 _Gottfried Helms_ and _Paul D. Hanna_, Aug 22 2005