cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111822 Number of partitions of 5^n into powers of 5, also equals the row sums of triangle A111820, which shifts columns left and up under matrix 5th power.

This page as a plain text file.
%I A111822 #17 Nov 28 2017 11:46:49
%S A111822 1,2,7,82,3707,642457,446020582,1288155051832,15905066118254957,
%T A111822 856874264098480364332,204616369654716156089739332,
%U A111822 219286214391142987407272329973707,1065403165201779499307991460987124895582,23663347632778954225192551079067428619449114332
%N A111822 Number of partitions of 5^n into powers of 5, also equals the row sums of triangle A111820, which shifts columns left and up under matrix 5th power.
%H A111822 Alois P. Heinz, <a href="/A111822/b111822.txt">Table of n, a(n) for n = 0..55</a>
%F A111822 a(n) = [x^(5^n)] 1/Product_{j>=0}(1-x^(5^j)).
%o A111822 (PARI) a(n,q=5)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
%Y A111822 Cf. A111820, A002577 (q=2), A078125 (q=3), A078537 (q=4), A111827 (q=6), A111832 (q=7), A111837 (q=8).
%Y A111822 Column k=5 of A145515.
%K A111822 nonn
%O A111822 0,2
%A A111822 _Gottfried Helms_ and _Paul D. Hanna_, Aug 22 2005