This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111830 #7 Jun 13 2017 22:36:47 %S A111830 1,1,1,1,7,1,1,154,49,1,1,16275,8281,343,1,1,9106461,6558209,410914, %T A111830 2401,1,1,28543862991,27307109501,2298650515,20170801,16807,1,1, %U A111830 521136519414483,636922972420469,67522139062441,790856748801,988621354 %N A111830 Triangle P, read by rows, that satisfies [P^7](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(7*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0. %C A111830 Also P(n,k) = partitions of (7^n - 7^(n-k)) into powers of 7 <= 7^(n-k). %F A111830 Let q=7; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111834). %e A111830 Let q=7; the g.f. of column k of matrix power P^m is: %e A111830 1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) + %e A111830 (m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) + %e A111830 (m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ... %e A111830 where L(x) satisfies: %e A111830 x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ... %e A111830 and L(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 +... (A111834). %e A111830 Thus the g.f. of column 0 of matrix power P^m is: %e A111830 1 + m*L(x) + m^2/2!*L(x)*L(7*x) + m^3/3!*L(x)*L(7*x)*L(7^2*x) + %e A111830 m^4/4!*L(x)*L(7*x)*L(7^2*x)*L(7^3*x) + ... %e A111830 Triangle P begins: %e A111830 1; %e A111830 1,1; %e A111830 1,7,1; %e A111830 1,154,49,1; %e A111830 1,16275,8281,343,1; %e A111830 1,9106461,6558209,410914,2401,1; %e A111830 1,28543862991,27307109501,2298650515,20170801,16807,1; ... %e A111830 where P^7 shifts columns left and up one place: %e A111830 1; %e A111830 7,1; %e A111830 154,49,1; %e A111830 16275,8281,343,1; ... %o A111830 (PARI) P(n,k,q=7)=local(A=Mat(1),B);if(n<k || k<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+1,k+1])) %Y A111830 Cf. A111831 (column 1), A111832 (row sums), A111833 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111820 (q=5), A111825 (q=6), A111835 (q=8). %K A111830 frac,nonn,tabl %O A111830 0,5 %A A111830 _Gottfried Helms_ and _Paul D. Hanna_, Aug 22 2005