This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111882 #25 Aug 11 2025 14:04:45 %S A111882 1,1,0,4,4,36,256,400,17424,784,1478656,876096,154753600,560363584, %T A111882 19057250304,220388935936,2564046397696,83038749753600, %U A111882 327933273309184,33173161139160064,26222822450021376,14475245839622726656 %N A111882 Row sums of triangle A111595 (normalized rescaled squared Hermite polynomials). %H A111882 G. C. Greubel, <a href="/A111882/b111882.txt">Table of n, a(n) for n = 0..449</a> %F A111882 E.g.f.: exp(x/(1+x))/sqrt(1-x^2). %F A111882 a(n) = Sum_{m=0..n} A111595(n, m), n>=0. %F A111882 A111882(n) = A001464(n)^2. - _Mark van Hoeij_, Nov 11 2009 %F A111882 D-finite with recurrence a(n) +(n-2)*a(n-1) -(n-1)*(n-2)*a(n-2) -(n-1)*(n-2)^2*a(n-3)=0. - _R. J. Mathar_, Oct 05 2014 %t A111882 With[{nmax = 50}, CoefficientList[Series[Exp[x/(1 + x)]/Sqrt[1 - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jun 10 2018 *) %o A111882 (Python) %o A111882 from sympy import hermite, Poly, sqrt %o A111882 def a(n): return sum(Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()) # _Indranil Ghosh_, May 26 2017 %o A111882 (PARI) x='x+O('x^30); Vec(serlaplace(exp(x/(1+x))/sqrt(1-x^2))) \\ _G. C. Greubel_, Jun 10 2018 %o A111882 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1+x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jun 10 2018 %Y A111882 Cf. A111883 (unsigned row sums of A111595). %K A111882 nonn,easy %O A111882 0,4 %A A111882 _Wolfdieter Lang_, Aug 23 2005