cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111882 Row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).

This page as a plain text file.
%I A111882 #25 Aug 11 2025 14:04:45
%S A111882 1,1,0,4,4,36,256,400,17424,784,1478656,876096,154753600,560363584,
%T A111882 19057250304,220388935936,2564046397696,83038749753600,
%U A111882 327933273309184,33173161139160064,26222822450021376,14475245839622726656
%N A111882 Row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).
%H A111882 G. C. Greubel, <a href="/A111882/b111882.txt">Table of n, a(n) for n = 0..449</a>
%F A111882 E.g.f.: exp(x/(1+x))/sqrt(1-x^2).
%F A111882 a(n) = Sum_{m=0..n} A111595(n, m), n>=0.
%F A111882 A111882(n) = A001464(n)^2. - _Mark van Hoeij_, Nov 11 2009
%F A111882 D-finite with recurrence a(n) +(n-2)*a(n-1) -(n-1)*(n-2)*a(n-2) -(n-1)*(n-2)^2*a(n-3)=0. - _R. J. Mathar_, Oct 05 2014
%t A111882 With[{nmax = 50}, CoefficientList[Series[Exp[x/(1 + x)]/Sqrt[1 - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jun 10 2018 *)
%o A111882 (Python)
%o A111882 from sympy import hermite, Poly, sqrt
%o A111882 def a(n): return sum(Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()) # _Indranil Ghosh_, May 26 2017
%o A111882 (PARI) x='x+O('x^30); Vec(serlaplace(exp(x/(1+x))/sqrt(1-x^2))) \\ _G. C. Greubel_, Jun 10 2018
%o A111882 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1+x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jun 10 2018
%Y A111882 Cf. A111883 (unsigned row sums of A111595).
%K A111882 nonn,easy
%O A111882 0,4
%A A111882 _Wolfdieter Lang_, Aug 23 2005