cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111883 Unsigned row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).

This page as a plain text file.
%I A111883 #27 Sep 08 2022 08:45:21
%S A111883 1,1,4,16,100,676,5776,53824,583696,6864400,90174016,1274204416,
%T A111883 19642583104,323196798016,5714394630400,107112895415296,
%U A111883 2135062451773696,44858948563673344,994634863541502976,23133227941938073600,564474119626559497216,14388648533002088866816
%N A111883 Unsigned row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).
%H A111883 Indranil Ghosh, <a href="/A111883/b111883.txt">Table of n, a(n) for n = 0..100</a>
%F A111883 E.g.f.: exp(x/(1-x))/sqrt(1-x^2).
%F A111883 a(n) = A000085(n)^2. - _Michael Somos_, Aug 30 2005
%F A111883 Conjecture: a(n) -n*a(n-1) -n*(n-1)*a(n-2) +(n-1)*(n-2)^2*a(n-3)=0. - _R. J. Mathar_, Oct 05 2014
%F A111883 Remark: the above conjectured recurrence is true and can be easily obtained by the e.g.f. - _Emanuele Munarini_, Aug 31 2017
%F A111883 a(n) = |H_n(i/sqrt(2))|^2 / 2^n = H_n(i/sqrt(2)) * H_n(-i/sqrt(2)) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1). - _Vladimir Reshetnikov_, Oct 11 2016
%F A111883 a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^n / 2. - _Vaclav Kotesovec_, Oct 01 2017
%t A111883 Table[Abs[HermiteH[n, I/Sqrt[2]]]^2/2^n, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 11 2016 *)
%t A111883 CoefficientList[Series[Exp[t/(1-t)]/Sqrt[1-t^2],{t,0,100}],t] Range[0, 12]! (* _Emanuele Munarini_, Aug 31 2017 *)
%o A111883 (PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)) /* _Michael Somos_, Aug 30 2005 */
%o A111883 (Python)
%o A111883 from sympy import hermite, Poly, sqrt, I
%o A111883 def a(n): return abs(Poly(hermite(n, I/sqrt(2)), x))**2/2**n # _Indranil Ghosh_, May 26 2017
%o A111883 (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jun 09 2018
%Y A111883 Cf. A111882 (row sums of A111595).
%K A111883 nonn,easy
%O A111883 0,3
%A A111883 _Wolfdieter Lang_, Aug 23 2005