This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111886 #16 Jul 30 2023 02:15:07 %S A111886 1,1764,1942416,1744835904,1413470290176,1083688832185344, %T A111886 806595068762689536,590914962115587293184,429295503918929370218496, %U A111886 310518802877016005311463424,224098118280955193084850733056 %N A111886 Sixth column of triangle A112492 (inverse scaled Pochhammer symbols). %C A111886 Also continuation of family of differences of reciprocals of unity. See A001242 and triangle A008969. %H A111886 G. C. Greubel, <a href="/A111886/b111886.txt">Table of n, a(n) for n = 0..250</a> %H A111886 Mircea Merca, <a href="https://www.researchgate.net/publication/264664262_Some_experiments_with_complete_and_elementary_symmetric_functions">Some experiments with complete and elementary symmetric functions</a>, Periodica Mathematica Hungarica, 69 (2014), 182-189. %F A111886 G.f.: 1/Product_{j=1..6} (1-6!*x/j). %F A111886 a(n) = -((6!)^n)*Sum_{j=1..6} (-1)^j*binomial(6, j)/j^n, n >= 0. %F A111886 a(n) = A112492(n+5, 6), n>=0. %t A111886 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] +k!*T[n-1,k]]; (* T = A112492 *) %t A111886 Table[T[n+5,5], {n,0,30}] (* _G. C. Greubel_, Jul 24 2023 *) %o A111886 (PARI) a(n) = -((6!)^n)*sum(j=1, 6, (-1)^j*binomial(6, j)/j^n); \\ _Michel Marcus_, Apr 28 2020 %o A111886 (Magma) %o A111886 A111886:= func< n | (-1)*Factorial(6)^n*(&+[(-1)^j*Binomial(6,j)/j^n : j in [1..6]]) >; %o A111886 [A111886(n): n in [0..30]]; // _G. C. Greubel_, Jul 24 2023 %o A111886 (SageMath) %o A111886 @CachedFunction %o A111886 def T(n,k): # T = A112492 %o A111886 if (k==0 or k==n): return 1 %o A111886 else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k) %o A111886 def A111886(n): return T(n+5,5) %o A111886 [A111886(n) for n in range(31)] # _G. C. Greubel_, Jul 24 2023 %Y A111886 Also right-hand column 5 in triangle A008969. %K A111886 nonn,easy %O A111886 0,2 %A A111886 _Wolfdieter Lang_, Sep 12 2005