This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111888 #15 Jul 25 2023 09:15:17 %S A111888 1,109584,7245893376,381495483224064,17810567950611972096, %T A111888 778101042571221893382144,32762625292956765972873609216, %U A111888 1351813956241264848815287984717824 %N A111888 Eighth column of triangle A112492 (inverse scaled Pochhammer symbols). %C A111888 Also continuation of family of Differences of reciprocals of unity. See A001242, A111887 and triangle A008969. %H A111888 Mircea Merca, <a href="https://www.researchgate.net/publication/264664262_Some_experiments_with_complete_and_elementary_symmetric_functions">Some experiments with complete and elementary symmetric functions</a>, Periodica Mathematica Hungarica, 69 (2014), 182-189. %F A111888 G.f.: 1/Product_{j=1..8} 1-8!*x/j. %F A111888 a(n) = -((8!)^n) * Sum_{j=1..8} (-1)^j*binomial(8, j)/j^n, n>=0. %F A111888 a(n) = A112492(n+7, 8), n>=0. %t A111888 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] +k!*T[n-1,k]]; (* T = A112492 *) %t A111888 Table[T[n+7,7], {n,0,30}] (* _G. C. Greubel_, Jul 24 2023 *) %o A111888 (PARI) a(n) = -((8!)^n)*sum(j=1, 8, ((-1)^j)*binomial(8, j)/j^n); \\ _Michel Marcus_, Apr 28 2020 %o A111888 (Magma) %o A111888 A111888:= func< n | (-1)*Factorial(8)^n*(&+[(-1)^j*Binomial(8,j)/j^n : j in [1..8]]) >; %o A111888 [A111888(n): n in [0..30]]; // _G. C. Greubel_, Jul 24 2023 %o A111888 (SageMath) %o A111888 @CachedFunction %o A111888 def T(n,k): # T = A112492 %o A111888 if (k==0 or k==n): return 1 %o A111888 else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k) %o A111888 def A111888(n): return T(n+7,7) %o A111888 [A111888(n) for n in range(31)] # _G. C. Greubel_, Jul 24 2023 %Y A111888 Also right-hand column 7 in triangle A008969. %Y A111888 Cf. A001242, A111887, A112492. %K A111888 nonn,easy %O A111888 0,2 %A A111888 _Wolfdieter Lang_, Sep 12 2005